A Simple Risk Score Based on Routine Clinical Parameters Can Predict Frailty in Hospitalized Heart Failure Patients

被引:7
|
作者
Kaluzna-Oleksy, Marta [1 ,2 ]
Kukfisz, Agata [1 ]
Migaj, Jacek [1 ,2 ]
Dudek, Magdalena [1 ,2 ]
Krysztofiak, Helena [1 ]
Sawczak, Filip [1 ]
Szczechla, Magdalena [1 ]
Przytarska, Katarzyna [1 ]
Straburzynska-Migaj, Ewa [1 ,2 ]
Wleklik, Marta [3 ]
Uchmanowicz, Izabella [3 ]
机构
[1] Poznan Univ Med Sci, Dept Cardiol 1, PL-61848 Poznan, Poland
[2] Poznan Univ Med Sci, Lords Transfigurat Clin Hosp, PL-61848 Poznan, Poland
[3] Wroclaw Med Univ, Fac Hlth Sci, PL-50367 Wroclaw, Poland
关键词
frailty syndrome; SHARE-FI; risk model; HFrEF; DWELLING OLDER-ADULTS; CARDIOVASCULAR-DISEASES; ELDERLY-PATIENTS; PREVALENCE; OUTCOMES; INDEX; GUIDELINES; MORTALITY; HEALTH; BLOOD;
D O I
10.3390/jcm10245963
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Frailty syndrome (FS) has recently attracted attention as one of the major predictors of heart failure (HF) course severity. We aimed to develop a simple tool for predicting frailty in hospitalized HF patients using routine clinical parameters. A total of 153 hospitalized patients diagnosed with heart failure with reduced ejection fraction (HFrEF) were included in the study. Presence of FS was assessed with the SHARE-FI questionnaire. Clinical and biochemical parameters were collected. Using ROC curves and logistic regression analysis, a model predicting FS presence was developed and tested. Proposed model includes five variables with following cut-off values (1 point for each variable): age > 50 years, systolic pressure on admission < 110 mmHg, total cholesterol < 4.85 mmol/L, bilirubin >= 15.5 mmol/L, and alanine aminotransferase <= 34 U/L. Receiving 5 points was considered a high risk of FS with positive and negative predictive values (NPV), 83% and 72%, respectively, and specificity of 97%. Awarding 2 points or less ruled out FS in the studied group with negative predictive value 94%. The presented novel, simple score predicts FS in HFrEF patients with routine clinical parameters and has good positive and negative predictive values.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Simple Score to Predict Treatment Response to Low-Dose Tolvaptan in Patients with Heart Failure
    Takami, Aiko
    Kinugasa, Yoshiharu
    Kamitani, Hiroko
    Nakamura, Kensuke
    Hirai, Masayuki
    Yanagihara, Kiyotaka
    Matsubara, Koichi
    Kato, Masahiko
    Yamamoto, Kazuhiro
    [J]. INTERNATIONAL HEART JOURNAL, 2022, 63 (02) : 247 - 254
  • [42] Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with SFTS
    Zhang, Yin
    Zhong, Pei
    Wang, Lianzi
    Zhang, Yu
    Li, Nan
    Li, Yaoyao
    Jin, Yangyang
    Bibi, Asma
    Huang, Ying
    Xu, Yuanhong
    [J]. JOURNAL OF INFECTION AND PUBLIC HEALTH, 2023, 16 (03) : 393 - 398
  • [43] Clinical profile of patients with heart failure can predict rehospitalization and quality of life
    Di Mauro, Michele
    Petroni, Renata
    Clemente, Daniela
    Foschi, Massimiliano
    Tancredi, Fabrizio
    Camponetti, Virginia
    Gallina, Sabina
    Calafiore, Antonio M.
    Penco, Maria
    Romano, Silvio
    [J]. JOURNAL OF CARDIOVASCULAR MEDICINE, 2018, 19 (03) : 98 - 104
  • [44] Analysis of the Larissa Heart Failure Risk Score: Predictive Value in 9207 Patients Hospitalized for Heart Failure from a Single Center
    Xanthopoulos, Andrew
    Skoularigis, John
    Briasoulis, Alexandros
    Magouliotis, Dimitrios E.
    Zajichek, Alex
    Milinovich, Alex
    Kattan, Michael W.
    Triposkiadis, Filippos
    Starling, Randall C.
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (12):
  • [45] The impact of frailty according to Clinical Frailty Scale on clinical outcome in patients with heart failure
    Kanenawa, Kenji
    Isotani, Akihiro
    Yamaji, Kyohei
    Nakamura, Miho
    Tanaka, Yuichi
    Hirose-Inui, Kaoru
    Fujioka, Shimpei
    Mori, Shintaro
    Yano, Mariko
    Ito, Shinya
    Morinaga, Takashi
    Fukunaga, Masato
    Hyodo, Makoto
    Ando, Kenji
    [J]. ESC HEART FAILURE, 2021, 8 (02): : 1552 - 1561
  • [46] Can we predict the need for inotropic support in patients with acute heart failure? - the aplicability of a risk score in a real world scenario
    Mesquita, DDinis Valbom
    Nobre, C.
    Thomas, B.
    Santos, L.
    Sousa, C.
    Almeida, L.
    Tavares, J.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2014, 16 : 134 - 135
  • [47] Ethnic Differences in Comorbidities Do Not Predict Risk for Heart Failure Readmissions in Hospitalized Patients with Heart Failure with Preserved Ejection Fraction
    Hsiao, Ruth
    Nghia Nguyen
    Narezkina, Anya
    Huang, Grace
    Zhang, Sherry
    Greenberg, Barry
    [J]. JOURNAL OF CARDIAC FAILURE, 2016, 22 (08) : S76 - S76
  • [48] A simple score for early risk stratification in acute heart failure
    Xanthopoulos, A.
    Giamouzis, G.
    Tryposkiadis, K.
    Paraskevopoulou, E.
    Paraskevopoulou, P.
    Karagiannis, G.
    Patsilinakos, S.
    Parissis, J.
    Farmakis, D.
    Butler, J.
    Skoularigis, J.
    Triposkiadis, F.
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 230 : 248 - 254
  • [49] The hospital frailty risk score in patients with heart failure is strongly associated with outcomes but less so with pharmacotherapy
    McAlister, F. A.
    Savu, A.
    Ezekowitz, J. A.
    Armstrong, P. W.
    Kaul, P.
    [J]. JOURNAL OF INTERNAL MEDICINE, 2020, 287 (03) : 322 - 332
  • [50] Testing for Frailty: Can We Identify a High Risk Population in Patients with Advanced Heart Failure?
    Fida, Nadia
    Patel, Snehal R.
    Gentile, Kevin
    Abreu, Yokasta
    Negassa, Abdissa
    Verghese, Joe
    Maybaum, Simon
    [J]. JOURNAL OF CARDIAC FAILURE, 2013, 19 (08) : S83 - S83