Existence of positive solutions for a semipositone p-Laplacian problem

被引:16
|
作者
Castro, Alfonso [1 ]
de Figueredo, Djairo G. [2 ]
Lopera, Emer [3 ]
机构
[1] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
[2] Univ Estadual Campinas, Inst Matemat Estat & Comp Cient, Caixa Postal 6065, BR-13083859 Campinas, SP, Brazil
[3] Univ Nacl Colombia, Escuela Matemat, Sede Medellin, Apartado Aereo 3840, Medellin, Colombia
关键词
mountain pass theorem; semipositone problem; positive solutions; p-Laplacian; maximum principles; a priori estimates; ELLIPTIC-EQUATIONS;
D O I
10.1017/S0308210515000657
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of positive solutions to a semipositone p-Laplacian problem combining mountain pass arguments, comparison principles, regularity principles and a priori estimates.
引用
收藏
页码:475 / 482
页数:8
相关论文
共 50 条
  • [1] Existence of a positive solution for a p-Laplacian semipositone problem
    Chhetri, Maya
    Shivaji, R.
    [J]. BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 323 - 327
  • [2] Existence of positive solutions for a parameter fractional p-Laplacian problem with semipositone nonlinearity
    Lopera, Emer
    Lopez, Camila
    Vidal, Raul E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [3] Positive solutions for a semipositone anisotropic p-Laplacian problem
    A. Razani
    Giovany M. Figueiredo
    [J]. Boundary Value Problems, 2024
  • [4] Positive solutions for a semipositone anisotropic p-Laplacian problem
    Razani, A.
    Figueiredo, Giovany M.
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [5] Existence of positive radial solutions for a superlinear semipositone p-Laplacian problem on the exterior of a ball
    Morris, Quinn
    Shivaji, Ratnasingham
    Sim, Inbo
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) : 409 - 428
  • [6] Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems
    Chhetri, M.
    Drabek, P.
    Shivaji, R.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (05) : 925 - 936
  • [7] Existence and multiplicity of positive solutions for singular semipositone p-Laplacian equations
    Agarwal, RP
    Cao, DM
    Lü, HS
    O'Regan, D
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (03): : 449 - 475
  • [8] On positive solutions for classes of p-Laplacian semipositone systems
    Chhetri, M
    Hai, DD
    Shivaji, R
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (04): : 1063 - 1071
  • [9] Positive solutions of multiparameter semipositone p-Laplacian problems
    Perera, Kanishka
    Shivaji, Ratnasingham
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1397 - 1400
  • [10] Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP
    Rao, Sabbavarapu Nageswara
    Singh, Manoj
    Msmali, Ahmed Hussein
    Ahmadini, Abdullah Ali H.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)