Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution

被引:33
|
作者
Wapenaar, Kees [1 ]
Ruigrok, Elmer [1 ]
van der Neut, Joost [1 ]
Draganov, Deyan [1 ]
机构
[1] Delft Univ Technol, Dept Geotechnol, NL-2600 GA Delft, Netherlands
关键词
SOUTHERN CALIFORNIA; TOMOGRAPHY; INTERFEROMETRY; MICROSEISMS; ARRAY; FIELD; MODEL;
D O I
10.1029/2010GL045523
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology. Citation: Wapenaar, K., E. Ruigrok, J. van der Neut, and D. Draganov (2011), Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution, Geophys. Res. Lett., 38, L01313, doi:10.1029/2010GL045523.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Three-Dimensional S Wave Velocity Structure of Central Japan Estimated by Surface-Wave Tomography Using Ambient Noise
    Nimiya, H.
    Ikeda, T.
    Tsuji, T.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (04)
  • [22] CC-FJpy: A Python']Python Package for Extracting Overtone Surface-Wave Dispersion from Seismic Ambient-Noise Cross Correlation
    Li, Zhengbo
    Zhou, Jie
    Wu, Gaoxiong
    Wang, Jiannan
    Zhang, Gongheng
    Dong, Sheng
    Pan, Lei
    Yang, Zhentao
    Gao, Lina
    Ma, Qingbo
    Ren, Hengxin
    Chen, Xiaofei
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (05) : 3179 - 3186
  • [23] Horizontal seismic wave at ground surface from transfer function based on ambient noise
    Lim, Doyoon
    Ahn, Jae-Kwang
    [J]. FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [24] On the Accuracy of Surface-Wave Dispersion Measurements from Horizontal-Component Ambient Noise Cross Correlations
    Xie, Jinyun
    Luo, Yinhe
    Yang, Yingjie
    Xie, Yanan
    Yang, Xiaozhou
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2023, 94 (06) : 2787 - 2800
  • [25] Surface-wave phase-velocity maps of the Anatolia region (Turkey) from ambient noise tomography
    Legendre, C. P.
    Tseng, T. L.
    Zhao, L.
    [J]. JOURNAL OF ASIAN EARTH SCIENCES, 2020, 193
  • [26] Pronounced Seismic Anisotropy in Kanto Sedimentary Basin: A Case Study of Using Dense Arrays, Ambient Noise Seismology, and Multi-Modal Surface-Wave Imaging
    Jiang, Chengxin
    Denolle, Marine A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (08)
  • [27] Near-surface VS structure by inversion of surface wave estimated from ambient seismic noise
    Shirzad, Taghi
    Shomali, Z. Hossein
    Naghavi, Mojtaba
    Norouzi, Rahim
    [J]. NEAR SURFACE GEOPHYSICS, 2015, 13 (05) : 447 - 453
  • [28] Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps
    Yao, Huajian
    van der Hilst, Robert D.
    de Hoop, Maarten V.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 166 (02) : 732 - 744
  • [29] Love wave tomography in Italy from seismic ambient noise
    Fabrizio Bernardi
    Alberto Michelini
    [J]. Earthquake Science, 2010, 23 (05) : 487 - 495
  • [30] Sequencing Seismic Noise Correlations for Improving Surface Wave Retrieval and Characterizing Noise Sources
    Fang, Hongjian
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (2A) : 848 - 858