On the distribution of conjugate points along semi-Riemannian geodesics

被引:13
|
作者
Piccione, P [1 ]
Tausk, DV [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Sao Paulo, Brazil
关键词
D O I
10.4310/CAG.2003.v11.n1.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Helfer in [6] was the first to produce an example of a spacelike Lorentzian geodesic with a continuum of conjugate points. In this paper we show the following result: given an interval [a,b] of R and any closed subset F of E contained in]a, b], then there exists a Lorentzian manifold (M, g) and a spacelike geodesic 7: [a, b] --> M such that gamma (t) is conjugate to gamma(a) along gamma iff t is an element of F.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 50 条
  • [41] SEMI-RIEMANNIAN GEOMETRY WITH NONHOLONOMIC CONSTRAINTS
    Korolko, Anna
    Markina, Irina
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (04): : 1581 - 1616
  • [42] Maslov index in semi-Riemannian submersions
    Caponio, Erasmo
    Angel Javaloyes, Miguel
    Piccione, Paolo
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (01) : 57 - 75
  • [43] Maslov index in semi-Riemannian submersions
    Erasmo Caponio
    Miguel Angel Javaloyes
    Paolo Piccione
    Annals of Global Analysis and Geometry, 2010, 38 : 57 - 75
  • [44] On the semi-Riemannian bumpy metric theorem
    Biliotti, L.
    Javaloyes, M. A.
    Piccione, P.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 1 - 18
  • [45] VOLUME MAXIMIZATION IN SEMI-RIEMANNIAN MANIFOLDS
    MEALY, J
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (03) : 793 - 814
  • [46] AN INVARIANT NORMALIZATION OF A SEMI-RIEMANNIAN MANIFOLD
    AKIVIS, MA
    CHEBYSHEVA, BP
    SIBERIAN MATHEMATICAL JOURNAL, 1981, 22 (06) : 809 - 815
  • [47] Conformally recurrent semi-Riemannian manifolds
    Suh, YJ
    Kwon, JH
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (01) : 285 - 307
  • [48] DEGENERATE SUBMANIFOLDS IN SEMI-RIEMANNIAN GEOMETRY
    KUPELI, DN
    GEOMETRIAE DEDICATA, 1987, 24 (03) : 337 - 361
  • [49] On the degrees of freedom of a semi-Riemannian metric
    Llosa, J
    Soler, D
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (05) : 893 - 908
  • [50] Semi-Riemannian manifold with semi-symmetric connections
    Zangiabadi, Elham
    Nazari, Zohreh
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 169