A 1-separation formula for the graph Kemeny constant and Braess edges

被引:5
|
作者
Faught, Nolan [1 ]
Kempton, Mark [1 ]
Knudson, Adam [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Kemeny's constant; Effective resistance; Resistance distance; Graph theory; Graph connectivity; KIRCHHOFF; PARADOX;
D O I
10.1007/s10910-021-01294-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Kemeny's constant of a simple connected graph G is the expected length of a random walk from i to any given vertex j not equal i. We provide a simple method for computing Kemeny's constant for 1-separable graphs via effective resistance methods from electrical network theory. Using this formula, we furnish a simple proof that the path graph on n vertices maximizes Kemeny's constant for the class of undirected trees on n vertices. Applying this method again, we simplify existing expressions for the Kemeny's constant of barbell graphs and demonstrate which barbell maximizes Kemeny's constant. This 1-separation identity further allows us to create sufficient conditions for the existence of Braess edges in 1-separable graphs. We generalize the notion of the Braess edge to Braess sets, collections of non-edges in a graph such that their addition to the base graph increases the Kemeny constant. We characterize Braess sets in graphs with any number of twin pendant vertices, generalizing work of Kirkland and Zeng (Electron J Linear Algebra 31(1):444-464, 2016) and Ciardo (Linear Algebra Appl, 2020).
引用
收藏
页码:49 / 69
页数:21
相关论文
共 42 条
  • [1] A 1-separation formula for the graph Kemeny constant and Braess edges
    Nolan Faught
    Mark Kempton
    Adam Knudson
    [J]. Journal of Mathematical Chemistry, 2022, 60 : 49 - 69
  • [2] KEMENY'S CONSTANT AND AN ANALOGUE OF BRAESS' PARADOX FOR TREES
    Kirkland, Steve
    Zeng, Ze
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 444 - 464
  • [3] Kemeny's constant for a graph with bridges
    Breen, Jane
    Crisostomi, Emanuele
    Kim, Sooyeong
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 322 : 20 - 35
  • [4] Kemeny's constant and the effective graph resistance
    Wang, Xiangrong
    Dubbeldam, Johan L. A.
    Van Mieghem, Piet
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 535 : 231 - 244
  • [5] The minimum rank of a sign pattern matrix with a 1-separation
    Arav, Marina
    Hall, Frank J.
    Li, Zhongshan
    van der Holst, Hein
    Zhang, Lihua
    Zhou, Wenyan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 448 : 205 - 216
  • [6] Kemeny Constant-Based Optimization of Network Clustering Using Graph Neural Networks
    Martino, Sam Alexander
    Morado, Joao
    Li, Chenghao
    Lu, Zhenghao
    Rosta, Edina
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (34): : 8103 - 8115
  • [7] 含有1-separation和2-separation符号模式矩阵的最小秩
    赵璇
    高玉斌
    [J]. 重庆理工大学学报(自然科学), 2020, 34 (10) : 247 - 254
  • [8] On the number of edges in a graph with no (k+1)-connected subgraphs
    Bernshteyn, Anton
    Kostochka, Alexandr
    [J]. DISCRETE MATHEMATICS, 2016, 339 (02) : 682 - 688
  • [9] 一个含有两个1-separation符号模式矩阵的最小秩
    龙佳平
    邵燕灵
    [J]. 中北大学学报(自然科学版), 2016, 37 (02) : 112 - 119
  • [10] AN EFFICIENT ALGORITHM FOR COLORING THE EDGES OF A GRAPH WITH DELTA+1 COLORS
    ARJOMANDI, E
    [J]. INFOR, 1982, 20 (2-3) : 82 - 101