High-Surface-Area Antimony Sulfide Chalcogels

被引:17
|
作者
Subrahmanyam, Kota Surya [1 ]
Malliakas, Christos D. [1 ]
Islam, Saiful M. [1 ]
Sarma, Debajit [1 ]
Wu, Jinsong [2 ]
Kanatzidis, Mercouri G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Northwestern Univ, NUANCE Ctr, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
SOL-GEL PROCESS; POLYSULFIDE CHALCOGELS; BIOMIMETIC CHALCOGELS; RADIOACTIVE IODINE; HYDROGEN EVOLUTION; ORGANIC AEROGELS; ADSORPTION; CATALYSTS; NANOARCHITECTURES; SPECTROSCOPY;
D O I
10.1021/acs.chemmater.6b02913
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chalcogels are a new class of aerogel materials with diverse properties relevant to catalysis, ion-exchange, and gas adsorption. We report the synthesis of high-surface-area antimony sulfide chalcogels through the sol-gel process followed by supercritical drying. Four different synthetic routes were employed: (1) hydrolysis of sodium thioantimonite (Na3SbS3); (2) ligand metathesis between SW3+ metal linker and SbS33- anion; (3) reaction of Sb2S3 with Na2S center dot 9H(2)O; and (4) reaction of Sb2S3 with KOH. All these reactions enable the formation of antimony sulfide gels. The aerogels derived after supercritical drying exhibit high porosity with Brunauer-Emmett-Teller (BET) surface areas up to 300 m(2) g(-1). The oxidation state of antimony in these chalcogels has been assigned by X-ray photoelectron spectroscopy (XPS) to be +3. Pair distribution function analysis suggests that the local environment around the Sb atoms is very similar to that of crystalline Sb2S3. All the antimony sulfide chalcogels possess the band gap of similar to 4.75 eV, and they are thermally stable even up to 600 degrees C.
引用
收藏
页码:7744 / 7749
页数:6
相关论文
共 50 条
  • [31] SELECTIVE MOLECULAR SORPTION BY HIGH-SURFACE-AREA CATALYST SUPPORTS
    HICKEY, GS
    SHARMA, PK
    THERMOCHIMICA ACTA, 1993, 226 : 333 - 342
  • [32] Preparation and characterization of high-surface-area polymer substrates for microcalorimetry
    Lee, VA
    Craig, RG
    Filisko, FE
    Zand, R
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1996, 31 (01): : 51 - 62
  • [33] Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite
    J. Song
    S.-Y. Jia
    H.-T. Ren
    S.-H. Wu
    X. Han
    International Journal of Environmental Science and Technology, 2015, 12 : 1559 - 1568
  • [34] SYNTHESIS OF THERMOSTABLE HIGH-SURFACE-AREA ALUMINA FOR CATALYST SUPPORT
    MAEDA, K
    MIZUKAMI, F
    WATANABE, M
    ARAI, N
    NIWA, S
    TOBA, M
    SHIMIZU, K
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1990, 9 (05) : 522 - 523
  • [35] CHARACTERIZATION OF ACTIVATED CARBON-FIBERS WITH HIGH-SURFACE-AREA
    NIEMINEN, M
    RANTA, J
    LAINE, J
    NOUSIAINEN, P
    CHARACTERIZATION OF POROUS SOLIDS III, 1994, 87 : 689 - 694
  • [36] Carbon Dioxide Adsorption by a High-Surface-Area Activated Charcoal
    Ahmed, Ahmed S.
    Alsultan, Mohammed
    Sabah, Assim A.
    Swiegers, Gerhard F.
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (05):
  • [37] High-surface-area oxides obtained by an activated carbon route
    Schwickardi, M
    Johann, T
    Schmidt, W
    Schüth, F
    CHEMISTRY OF MATERIALS, 2002, 14 (09) : 3913 - 3919
  • [38] ORIENTED MICROGRAPHITIC CARBON-FILMS OF HIGH-SURFACE-AREA
    SATO, M
    ISOBE, H
    YAMAMOTO, K
    IIYAMA, T
    KANEKO, K
    CARBON, 1995, 33 (09) : 1347 - 1349
  • [39] Synthesis and application of high-surface-area graphitic carbon nitride
    Li, Min
    Li, Haiyan
    Sun, Famin
    Li, Jie
    Zhang, Lingfeng
    Yuan, Zhongyong
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30 (01): : 158 - 168
  • [40] SYNTHESIS OF HIGH-SURFACE-AREA ALPHA-LIALO2
    POEPPELMEIER, KR
    CHIANG, CK
    KIPP, DO
    INORGANIC CHEMISTRY, 1988, 27 (25) : 4523 - 4524