Parallel split-step Fourier methods for the coupled nonlinear Schrodinger type equations

被引:28
|
作者
Taha, TR [1 ]
Xu, XM [1 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
来源
JOURNAL OF SUPERCOMPUTING | 2005年 / 32卷 / 01期
关键词
split-step method; NLS; parallel algorithms; FFTW;
D O I
10.1007/s11227-005-0183-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The nonlinear Schrodinger type equations are of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrodinger equation. In this paper we introduce parallel split-step Fourier methods for the numerical simulations of the coupled nonlinear Schrodinger equation that describes the propagation of two orthogonally polarized pulses in a monomode birefringent fibers. These methods are implemented on the Origin 2000 multiprocessor computer. Our numerical experiments have shown that these methods give accurate results and considerable speedup.
引用
收藏
页码:5 / 23
页数:19
相关论文
共 50 条
  • [41] The split-step pade-fourier solution
    Kuesel, Elizabeth T.
    Siegmann, William L.
    Collins, Michael D.
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2007, 93 (05) : 810 - 814
  • [42] MIGRATION USING THE SPLIT-STEP FOURIER METHOD
    FREIRE, R
    STOFFA, PL
    GEOPHYSICS, 1987, 52 (03) : 402 - 403
  • [43] A class of split-step balanced methods for stiff stochastic differential equations
    Haghighi, Amir
    Hosseini, S. Mohammad
    NUMERICAL ALGORITHMS, 2012, 61 (01) : 141 - 162
  • [44] High Accuracy Split-Step Finite Difference Method for Schrodinger-KdV Equations
    Liao, Feng
    Zhang, Lu-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (04) : 413 - 422
  • [45] A class of split-step balanced methods for stiff stochastic differential equations
    Amir Haghighi
    S. Mohammad Hosseini
    Numerical Algorithms, 2012, 61 : 141 - 162
  • [46] SPLIT-STEP SPECTRAL METHOD FOR NONLINEAR SCHRODINGER-EQUATION WITH CONSTANT BACKGROUND INTENSITIES
    GEISLER, T
    CHRISTIANSEN, PL
    MORK, J
    RAMANUJAM, PS
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (02) : 492 - 495
  • [47] On the split-step method for the solution of nonlinear Schrodinger equation with the Riesz space fractional derivative
    Mohebbi, Akbar
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2016, 4 (01): : 54 - 69
  • [48] A split-step finite difference method for nonparaxial nonlinear Schrodinger equation at critical dimension
    Malakuti, Kamyar
    Parilov, Evgueni
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 891 - 899
  • [49] Parallel Split-Step Method for Digital Backpropagation
    Guiomar, Fernando P.
    Amado, Sofia B.
    Martins, Celestino S.
    Pinto, Armando N.
    2015 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2015,
  • [50] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):