Parallel split-step Fourier methods for the coupled nonlinear Schrodinger type equations

被引:28
|
作者
Taha, TR [1 ]
Xu, XM [1 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
来源
JOURNAL OF SUPERCOMPUTING | 2005年 / 32卷 / 01期
关键词
split-step method; NLS; parallel algorithms; FFTW;
D O I
10.1007/s11227-005-0183-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The nonlinear Schrodinger type equations are of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrodinger equation. In this paper we introduce parallel split-step Fourier methods for the numerical simulations of the coupled nonlinear Schrodinger equation that describes the propagation of two orthogonally polarized pulses in a monomode birefringent fibers. These methods are implemented on the Origin 2000 multiprocessor computer. Our numerical experiments have shown that these methods give accurate results and considerable speedup.
引用
收藏
页码:5 / 23
页数:19
相关论文
共 50 条
  • [1] Parallel Split-Step Fourier Methods for the Coupled Nonlinear Schrödinger Type Equations
    Thiab R. Taha
    Xiangming Xu
    The Journal of Supercomputing, 2005, 32 : 5 - 23
  • [2] Comparison of split-step and Hamiltonian integration methods for simulation of the nonlinear Schrodinger type equations
    Semenova, Anastassiya
    Dyachenko, Sergey A.
    Korotkevich, Alexander O.
    Lushnikov, Pavel M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 427
  • [3] Higher Order Asymmetrical Split-Step Fourier Method for Nonlinear Schrodinger Equations
    Hu, Qingsong
    Zhou, Junhe
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 800 - 803
  • [4] Split-step Fourier method for nonlinear Schrodinger equation
    Bogomolov, Ya. L.
    Yunakovsky, A. D.
    Proceedings of the International Conference Days on Diffraction 2006, 2006, : 34 - 42
  • [5] Split-step Orthogonal Spline Collocation Method for Coupled Nonlinear Schrodinger Equations
    Wang, Shan-shan
    Zhang, Lu-ming
    INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND MATHEMATICAL STATISTICS (SMMS 2015), 2015, : 439 - 443
  • [6] A split-step Fourier pseudo-spectral method for solving the space fractional coupled nonlinear Schrodinger equations
    Abdolabadi, F.
    Zakeri, A.
    Amiraslani, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [7] HIGH-ORDER SPLIT-STEP EXPONENTIAL METHODS FOR SOLVING COUPLED NONLINEAR SCHRODINGER-EQUATIONS
    BANDRAUK, AD
    SHEN, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21): : 7147 - 7155
  • [8] Parallel split-step Fourier methods for the CMKdV equation
    Taha, TR
    Liu, R
    PDPTA'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-4, 2003, : 1317 - 1323
  • [9] SPLIT-STEP METHODS FOR THE SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION
    WEIDEMAN, JAC
    HERBST, BM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (03) : 485 - 507
  • [10] On Numerical Energy Conservation by the Split-step Fourier Method for the Nonlinear Schrodinger Equation
    Gauckler, Ludwig
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738