Mobius-invariant metrics and generalized angles in ptolemeic spaces

被引:14
|
作者
Aseev, VV
Sychëv, AV
Tetenov, AV
机构
[1] Sobolev Institute of Mathematics, Novosibirsk
[2] Gorno-Altaisk State University, Gorno-Altaisk
关键词
semimetric space; Ptolemeic space; bimetric space; Mobius mapping; quasimobius mapping; absolute cross-ratio; quasimeromorphic mapping; mapping with bounded distortion;
D O I
10.1007/s11202-005-0020-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Mobius and quasimobius mappings in spaces with a semimetric meeting the Ptolemy inequality. We construct a bimetrization of a Ptolemeic space which makes it possible to introduce a Mobius-invariant metric (angular distance) in the complement to each nonsingleton. This metric coincides with the hyperbolic metric in the canonical cases. We introduce the notion of generalized angle in a Ptolemeic space with vertices a pair of sets, determine its magnitude in terms of the angular distance and study distortion of generalized angles under quasimobius embeddings. As an application to noninjective mappings, we consider the behavior of the generalized angle under projections and obtain an estimate for the inverse distortion of generalized angles under quasimeromorphic mappings (mappings with bounded distortion).
引用
收藏
页码:189 / 204
页数:16
相关论文
共 50 条
  • [21] Geodesics and curvature of Mobius invariant metrics
    Herron, David A.
    Ibragimov, Zair
    Minda, David
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (03) : 891 - 921
  • [22] The Mobius Invariant QHT Spaces
    Aljuaid, Munirah
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [23] Mobius invariant metrics on the space of knots
    O'Hara, Jun
    GEOMETRIAE DEDICATA, 2020, 209 (01) : 1 - 13
  • [24] On Mobius invariant function spaces
    Aulaskari, R
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 480 - 481
  • [25] New ideals of Bloch mappings which are I-factorizable and Mobius-invariant
    Jimenez-Vargas, A.
    Ruiz-Casternado, D.
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2024, 7 (03): : 98 - 113
  • [26] Generalized Angles in Ptolemaic Mobius Structures
    Aseev, V. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (02) : 189 - 201
  • [27] A class of Mobius invariant function spaces
    Zhu, Kehe
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (03) : 977 - 1002
  • [28] MOBIUS INVARIANT FUNCTION-SPACES
    ARAZY, J
    FISHER, SD
    PEETRE, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1985, 363 : 110 - 145
  • [29] Mobius invariant Dirichlet type spaces
    Bao, Guanlong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1359 - 1372
  • [30] Bounded Mobius invariant QK spaces
    Pau, Jordi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1029 - 1042