On selection of semiparametric spatial regression models

被引:0
|
作者
Wang, Guannan [1 ]
Wang, Jue [2 ,3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Iowa State Univ, Stat Lab, Ames, IA 50011 USA
来源
STAT | 2019年 / 8卷 / 01期
关键词
bivariate splines; partially linear models; penalized regression; semiparametric regression; spatial data; PARTIALLY LINEAR-MODELS; VARIABLE SELECTION; LIKELIHOOD; SPLINES;
D O I
10.1002/sta4.221
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we focus on variable selection techniques for a class of semiparametric spatial regression models, which allow one to study effects of explanatory variables in the presence of spatial information. The spatial smoothing problem in the nonparametric part is tackled by means of bivariate splines over triangulation, which is able to deal efficiently with data distributed over irregularly shaped regions. In addition, we develop a unified procedure for variable selection to identify significant covariates under a double penalization framework, and we show that the penalized estimators enjoy the "oracle" property. The proposed method can simultaneously identify nonzero spatially distributed covariates and solve the problem of "leakage" across complex domains of the functional spatial component. To estimate the standard deviations of the proposed estimators for the coefficients, a sandwich formula is developed as well. In the end, Monte Carlo simulation examples and a real data example are provided to illustrate the proposed methodology.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Variable selection in semiparametric regression models for longitudinal data with informative observation times
    Jazi, Omidali Aghababaei
    Pullenayegum, Eleanor
    [J]. STATISTICS IN MEDICINE, 2022, 41 (17) : 3281 - 3298
  • [22] Bayesian analysis of semiparametric Bernstein polynomial regression models for data with sample selection
    Kim, Hea-Jung
    Roh, Taeyoung
    Choi, Taeryon
    [J]. STATISTICS, 2019, 53 (05) : 1082 - 1111
  • [23] Semiparametric group testing regression models
    Wang, D.
    McMahan, C. S.
    Gallagher, C. M.
    Kulasekera, K. B.
    [J]. BIOMETRIKA, 2014, 101 (03) : 587 - 598
  • [24] Semiparametric estimation of count regression models
    Gurmu, S
    Rilstone, P
    Stern, S
    [J]. JOURNAL OF ECONOMETRICS, 1999, 88 (01) : 123 - 150
  • [25] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [26] Nonparametric tests for semiparametric regression models
    Federico Ferraccioli
    Laura M. Sangalli
    Livio Finos
    [J]. TEST, 2023, 32 : 1106 - 1130
  • [27] New Ridge Regression Estimator in Semiparametric Regression Models
    Roozbeh, Mahdi
    Arashi, Mohammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3683 - 3715
  • [28] Sensitivity analysis in semiparametric regression models
    Fung, WK
    Zhu, ZY
    Wei, BC
    [J]. MEASUREMENT AND MULTIVARIATE ANALYSIS, 2002, : 233 - 240
  • [29] Testing linearity in semiparametric regression models
    Nummi, Tapio
    Pan, Jianxin
    Mesue, Nicholas
    [J]. STATISTICS AND ITS INTERFACE, 2013, 6 (01) : 3 - 8
  • [30] Semiparametric regression estimation in copula models
    Bagdonavicius, Vilijandas
    Malov, Sergey V.
    Nikulin, Mikhail S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1449 - 1467