Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients

被引:0
|
作者
Bebendorf, M [1 ]
机构
[1] Univ Leipzig, Fak Math & Informat, D-04109 Leipzig, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the efficient (approximate) inversion of finite element stiffness matrices of general second-order elliptic operators with L-infinity-coefficients. It will be shown that the inverse stiffness matrix can be approximated by hierarchical matrices (H-matrices). Furthermore, numerical results will demonstrate that it is possible to compute an approximate inverse with almost linear complexity.
引用
收藏
页码:1179 / 1199
页数:21
相关论文
共 50 条
  • [41] Analysis of the element-free Galerkin method with penalty for general second-order elliptic problems
    Zhang, Tao
    Li, Xiaolin
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 380
  • [42] A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR GENERAL SECOND-ORDER ELLIPTIC PROBLEM
    Al-Taweel, Ahmed
    Hussain, Saqib
    Lin, Runchang
    Zhu, Peng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (03) : 311 - 323
  • [43] Elliptic and Parabolic Second-Order PDEs with Growing Coefficients
    Krylov, N. V.
    Priola, E.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (01) : 1 - 22
  • [44] On second-order periodic elliptic operators in divergence form
    ter Elst, AFM
    Robinson, DW
    Sikora, A
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) : 569 - 637
  • [45] Eigenvalue asymptotics for second-order elliptic operators on networks
    von Belowa, Joachim
    Lubary, Jose A.
    ASYMPTOTIC ANALYSIS, 2012, 77 (3-4) : 147 - 167
  • [46] On second-order periodic elliptic operators in divergence form
    Ter Elst A.F.M.
    Robinson D.W.
    Sikora A.
    Mathematische Zeitschrift, 2001, 238 (3) : 569 - 637
  • [47] Homogenization of generalized second-order elliptic difference operators
    Simas, Alexandre B.
    Valentim, Fabio J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3709 - 3753
  • [48] A quantitative Carleman estimate for second-order elliptic operators
    Nakic, Ivica
    Rose, Christian
    Tautenhahn, Martin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 915 - 938
  • [49] On second-order almost-periodic elliptic operators
    Dungey, N
    ter Elst, AFM
    Robinson, DW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 735 - 753
  • [50] Numerical verifications for eigenvalues of second-order elliptic operators
    M. T. Nakao
    N. Yamamoto
    K. Nagatou
    Japan Journal of Industrial and Applied Mathematics, 1999, 16 : 307 - 320