Neuro-fuzzy approach for electro-discharge sinking process control

被引:0
|
作者
Klocke, F [1 ]
Raabe, R [1 ]
Wiesner, G [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Machine Tools & Prod Engn, D-52056 Aachen, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the increasing demands on modem manufacturing processes, traditional process and optimization systems are reaching their limits and reveal serious shortcomings. Intelligent technologies like fuzzy logic and neural networks can help to increase the economical viability of manufacturing. This article therefore presents an application in the field of electro-discharge machining (EDM).
引用
收藏
页码:587 / 588
页数:2
相关论文
共 50 条
  • [21] Hybrid neuro-fuzzy control approach of robot manipulators
    Touati, Y
    Djouani, K
    Amirat, Y
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2003, : 902 - 907
  • [22] Control of Organic Rankine Cycle, a neuro-fuzzy approach
    Enayatollahi, H.
    Fussey, P.
    Nguyen, B. K.
    [J]. CONTROL ENGINEERING PRACTICE, 2021, 109
  • [23] An Adaptive Neuro-Fuzzy Approach to Control a Distillation Column
    J. Fernández de Cañete
    T. Cordero
    D. Guijas
    J. Alarcon
    [J]. Neural Computing & Applications, 2000, 9 : 211 - 217
  • [24] An hierarchical process control system for highly efficient electro-discharge machining
    Behrens, A
    Witzak, MP
    [J]. 12TH INTERNATIONAL SYMPOSIUM FOR ELECTROMACHINING (ISEM), 1998, 1405 : 173 - 183
  • [25] EXPERIMENTAL INVESTIGATION ON ELECTRO-DISCHARGE DEPOSITION PROCESS
    Muralidharan, B.
    Chelladurai, H.
    Ramkumar, J.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 2A, 2014,
  • [26] Experimental analysis of electro-discharge deposition process
    B. Muralidharan
    H. Chelladurai
    [J]. The International Journal of Advanced Manufacturing Technology, 2015, 76 : 69 - 82
  • [27] Suction Control of a Robotic Gripper: A Neuro-Fuzzy Approach
    Nikos C. Tsourveloudis
    Ramesh Kolluru
    Kimon P. Valavanis
    Denis Gracanin
    [J]. Journal of Intelligent and Robotic Systems, 2000, 27 : 215 - 235
  • [28] An adaptive neuro-fuzzy approach to bulk tobacco flue-curing control process
    Wu, Juan
    Yang, Simon X.
    Tian, Fengchun
    [J]. DRYING TECHNOLOGY, 2017, 35 (04) : 465 - 477
  • [29] Inverse learning control using neuro-fuzzy approach for a process mini-plant
    Nazaruddin, YY
    Waluyo, J
    Hadisupadmo, S
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 247 - 252
  • [30] Experimental analysis of electro-discharge deposition process
    Muralidharan, B.
    Chelladurai, H.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (1-4): : 69 - 82