Combustion and emission performance of CO2/CH4/biodiesel and CO2/CH4/diesel blends in a Swirl Burner Generator

被引:13
|
作者
Kurji, H. [1 ,2 ]
Valera-Medina, A. [1 ]
Okon, Aniekan [1 ]
Chong, C. T. [3 ]
机构
[1] Cardiff Univ, Queens Bldg, Cardiff, S Glam, Wales
[2] Kerbela Univ, Dept Mech, Coll Engn, Kerbela, Iraq
[3] Univ Teknol Malaysia, UTM Ctr Low Carbon Transport Cooperat Imperial Co, Johor Baharu, Malaysia
关键词
Two-phase flow; Biodiesel; combustion; Gas Turbine; emissions; heat release; BIODIESEL; PARTICLES; DILUTION; BEHAVIOR; DIESEL; FUEL; GAS; OIL;
D O I
10.1016/j.egypro.2017.12.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Renewable biomass derived fuels are of increasing attention for industrial and aerospace applications due to worldwide depletion of fossil fuels and stricter environmental legislations. These facts have prompted continuous development for clean, sustainable and alternative fuels that produce low emissions. Even more, fuel flexibility is a required feature to meet all the former characteristics while reducing operating cost in gas turbines. Thus, some alternative fuels such as syngas or biodiesel can be used for gas turbines as these can comply with these requirements while being obtained from various processes, making them potential candidates for sustainable power generation. On the other hand in many combustion applications, the fuel is originally present as either liquid or solid. To assist mixing and the overall burning rate, the fuel is frequently first atomised and then sprayed into the combustion chamber. Most of the existing approaches dealing with combustion flows are limited to single-phase injection. To remove this limit, a new model for multiphase combustion has been developed. Therefore, this experimental work investigated the performance of a swirl burner using various mixtures of CO2/CH4 blends with either diesel or biodiesel derived from cooking oil. A 20 kW swirl burner was employed to analyse gas turbine combustion features under atmospheric conditions to quantify flame stability and emissions by using these fuels. A TESTO 350XL gas analyser was used to determine NOx and CO emission trends. Comparison between the blends was carried out at different equivalence ratios. CH* chemiluminescence diagnostics was also used and linked with the levels of emissions created through the trials. The results revealed that the use of biodiesel and CO2/CH4 blends mixtures resulted in lower CO production, i.e. 87% lower for the case at 10% CO2. Results showed that a notable reduction of 50% in NOx was obtained at all conditions for the biodiesel /CO2/CH4 blends. Diesel based flames showed high CH* intensity at the axial profile compared to the biodiesel blends due to their high sooting tendency. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [31] Characterization Study of CO2, CH4, and CO2/CH4 Hydroquinone Clathrates Formed by Gas-Solid Reaction
    Coupan, Romuald
    Pere, Eve
    Dicharry, Christophe
    Plantier, Frederic
    Diaz, Joseph
    Khoukh, Abdel
    Allouche, Joachim
    Labat, Stephane
    Pellerin, Virginie
    Grenet, Jean-Paul
    Sotiropoulos, Jean-Marc
    Senechal, Pascale
    Guerton, Fabrice
    Moonen, Peter
    Torre, Jean-Philippe
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (41): : 22883 - 22894
  • [32] Purification of CH4 from CH4/CO2 mixture by pressure swing adsorption
    Yang, Haiyan
    Li, Wenzhe
    Zhang, Hongqiong
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (03): : 119 - 123
  • [33] The impact of grassland conversion on CO2 emission and CH4 uptake
    Li, Y
    Lin, ED
    NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 115 - 120
  • [34] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    A. A. Sizova
    S. A. Grintsevich
    M. A. Kochurin
    V. V. Sizov
    E. N. Brodskaya
    Colloid Journal, 2021, 83 : 372 - 378
  • [35] Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs
    Liu, Bei
    Smit, Berend
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18): : 8515 - 8522
  • [36] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    Sizova, A. A.
    Grintsevich, S. A.
    Kochurin, M. A.
    Sizov, V. V.
    Brodskaya, E. N.
    COLLOID JOURNAL, 2021, 83 (03) : 372 - 378
  • [37] Decomposition of CO2, CH4 AND CO2-CH4 mixed gas hydrates
    Ohgaki, K
    Nakano, S
    Matsubara, T
    Yamanaka, S
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1997, 30 (02) : 310 - 314
  • [38] CO2 and CH4 Hydrates: Replacement or Cogrowth?
    Wu, Guozhong
    Tian, Linqing
    Chen, Daoyi
    Niu, Mengya
    Ji, Haoqing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (22): : 13401 - 13409
  • [39] Catalysts for CO2 reforming of CH4: a review
    Li, Meijia
    Sun, Zhuxing
    Hu, Yun Hang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (21) : 12495 - 12520
  • [40] CO2 hydrogenation into CH4 on NiHNaUSY zeolites
    Graca, I.
    Gonzalez, L. V.
    Bacariza, M. C.
    Fernandes, A.
    Henriques, C.
    Lopes, J. M.
    Ribeiro, M. F.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 : 101 - 110