On the two-dimensional hyperbolic stochastic sine-Gordon equation

被引:15
|
作者
Oh, Tadahiro [1 ,2 ]
Robert, Tristan [1 ,2 ,3 ]
Sosoe, Philippe [4 ]
Wang, Yuzhao [5 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
[4] Cornell Univ, Dept Math, 584 Malott Hall, Ithaca, NY 14853 USA
[5] Univ Birmingham, Sch Math, Watson Bldg, Birmingham B15 2TT, W Midlands, England
基金
欧洲研究理事会;
关键词
Stochastic sine-Gordon equation; Sine-Gordon equation; Renormalization; White noise; Gaussian multiplicative chaos; STATISTICAL-MECHANICS; REGULARITY;
D O I
10.1007/s40072-020-00165-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the two-dimensional stochastic sine-Gordon equation (SSG) in the hyperbolic setting. In particular, by introducing a suitable time-dependent renormalization for the relevant imaginary Gaussian multiplicative chaos, we prove local well-posedness of SSG for any value of a parameter beta 2>0in the nonlinearity. This exhibits sharp contrast with the parabolic case studied by Hairer and Shen (Commun Math Phys 341(3):933-989, 2016) and Chandra et al. (The dynamical sine-Gordon model in the full subcritical regime, [math.PR], 2018), where the parameter is restricted to the subcritical range: 0<beta 2<8 pi. We also present a triviality result for the unrenormalized SSG.
引用
下载
收藏
页码:1 / 32
页数:32
相关论文
共 50 条