Performance evaluation of adaptive meshing algorithms for fluorescence diffuse optical tomography using experimental data

被引:6
|
作者
Zhou, Lu [1 ]
Yazici, Birsen [1 ,2 ]
Ale, Angelique B. F. [3 ]
Ntziachristos, Vasilis [3 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[3] Helmholtz Zentrum Munchen, IBMI, D-85764 Neuherberg, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1364/OL.35.003727
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fluorescence diffuse optical tomography (FDOT) is a computationally demanding imaging problem. The discretizations of FDOT forward and inverse problems pose a trade-off between the accuracy and the computational efficiency of the image reconstruction. To address this trade-off, we analyzed the effect of discretization on the accuracy of FDOT imaging and proposed novel adaptive meshing algorithms for FDOT in a series of studies. In this Letter, we apply these new adaptive meshing algorithms to FDOT imaging using real data from a phantom experiment to demonstrate the practical advantages of our algorithms in FDOT image reconstruction. (C) 2010 Optical Society of America
引用
收藏
页码:3727 / 3729
页数:3
相关论文
共 50 条
  • [1] Discretization Error Analysis and Adaptive Meshing Algorithms for Fluorescence Diffuse Optical Tomography: Part I
    Guven, Murat
    Reilly-Raska, Laurel
    Zhou, Lu
    Yazici, Birsen
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) : 217 - 229
  • [2] Discretization Error Analysis and Adaptive Meshing Algorithms for Fluorescence Diffuse Optical Tomography in the Presence of Measurement Noise
    Zhou, Lu
    Yazici, Birsen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (04) : 1094 - 1111
  • [3] Diffuse optical tomography guided adaptive reconstruction in fluorescence molecular tomography
    Li, Mingze
    Liu, Fei
    Zhang, Bin
    Bai, Jing
    JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (02)
  • [4] Development of image reconstruction algorithms for fluorescence diffuse optical tomography using total light approach
    Okawa, S.
    Yamamoto, H.
    Miwa, Y.
    Yamada, Y.
    DIFFUSE OPTICAL IMAGING III, 2011, 8088
  • [5] Fluorescence diffuse optical tomography using upconverting nanoparticles
    Xu, Can T.
    Axelsson, Johan
    Andersson-Engels, Stefan
    APPLIED PHYSICS LETTERS, 2009, 94 (25)
  • [6] Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region
    Naser, Mohamed A.
    Patterson, Michael S.
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (01): : 169 - 184
  • [7] Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data
    Perez-Juste Abascal, Juan Felipe
    Aguirre, Juan
    Chamorro-Servent, Judit
    Schweiger, Martin
    Arridge, Simon
    Ripoll, Jorge
    Vaquero, Juan J.
    Desco, Manuel
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (03)
  • [8] Diffuse optical fluorescence tomography using time-resolved data acquired in transmission
    Leblond, Frederic
    Fortier, Simon
    Friedlander, Michael P.
    MULTIMODAL BIOMEDICAL IMAGING II, 2007, 6431
  • [9] Dynamic fluorescence diffuse optical tomography using the adaptive EKF and GRNN-based Learning
    Wang, Xin
    Liu, Yuhong
    Zhang, Jianwei
    BIOMEDICAL APPLICATIONS OF LIGHT SCATTERING XII, 2022, 11974
  • [10] Three-Dimensional Fluorescence Diffuse Optical Tomography Using the Adaptive Spatial Prior Approach
    Pei An Lo
    Huihua Kenny Chiang
    Journal of Medical and Biological Engineering, 2019, 39 : 827 - 834