Localization in one-dimensional chains with Levy-type disorder

被引:17
|
作者
Zakeri, Sepideh S. [1 ]
Lepri, Stefano [2 ,3 ]
Wiersma, Diederik S. [1 ,4 ,5 ]
机构
[1] Univ Florence, European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy
[2] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[3] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[4] CNR, Ist Nazl Ott, I-50125 Florence, Italy
[5] Univ Florence, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 03期
基金
欧洲研究理事会;
关键词
ENERGY-TRANSPORT; ANDERSON MODEL; SYSTEMS; DIFFUSION; LATTICES;
D O I
10.1103/PhysRevE.91.032112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study Anderson localization of the classical lattice waves in a chain with mass impurities distributed randomly through a power-law relation s(-(1+alpha)) with s as the distance between two successive impurities and alpha > 0. This model of disorder is long-range correlated and is inspired by the peculiar structure of the complex optical systems known as Levy glasses. Using theoretical arguments and numerics, we show that in the regime in which the average distance between impurities is finite with infinite variance, the small-frequency behavior of the localization length is xi(alpha)(omega) similar to omega(-alpha). The physical interpretation of this result is that, for small frequencies and long wavelengths, the waves feel an effective disorder whose fluctuations are scale dependent. Numerical simulations show that an initially localized wave-packet attains, at large times, a characteristic inverse power-law front with an alpha-dependent exponent which can be estimated analytically.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On transience of Levy-type processes
    Sandric, Nikola
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (07): : 1012 - 1040
  • [22] Nonsymmetric Levy-type operators
    Minecki, Jakub
    Szczypkowski, Karol
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (06) : 2234 - 2286
  • [23] Localization in the one-dimensional quantum chain with nonreciprocal disorder
    Li, Jia-Rui
    Zhang, Shu-Feng
    Zhang, Lian-Lian
    Gong, Wei-Jiang
    [J]. PHYSICAL REVIEW B, 2024, 110 (08)
  • [24] Moments of Levy-Type Processes
    Kuehn, Franziska
    [J]. LEVY MATTERS VI: LEVY-TYPE PROCESSES: MOMENTS, CONSTRUCTION AND HEAT KERNEL ESTIMATES, 2017, 2187 : 31 - 50
  • [25] Localization in one-dimensional systems with generalized Fibonacci disorder
    Lazo, E
    Onell, ME
    [J]. REVISTA MEXICANA DE FISICA, 1998, 44 : 52 - 54
  • [26] Density of states and localization lengths in one-dimensional linear chains
    DeOliveira, MJ
    Petri, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (18): : 2195 - 2205
  • [27] LOCALIZATION OF VIBRATIONAL-STATES IN ONE-DIMENSIONAL DISORDERED CHAINS
    HARTMANN, WM
    PAINTER, RD
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (03): : 409 - 409
  • [28] Electronic conductance of one-dimensional chains with phonon dephasing disorder
    Cresti, A.
    Grosso, G.
    Parravicini, G. Pastori
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (44) : 10059 - 10073
  • [29] Asymptotics of One-Dimensional Levy Approximations
    Berger, Arno
    Xu, Chuang
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (02) : 1164 - 1195
  • [30] Comment on "Excitons in Molecular Aggregates with Levy-Type Disorder: Anomalous Localization and Exchange Broadening of Optical Spectra" Reply
    Eisfeld, A.
    Vlaming, S. M.
    Moebius, S.
    Malyshev, V. A.
    Knoester, J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (25)