Adaptive cluster rendering via regression analysis

被引:6
|
作者
Liu, Xiao Dan [1 ,2 ]
Zheng, Chang Wen [1 ]
机构
[1] Chinese Acad Sci, Inst Software, Integrated Informat Syst Technol Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
VISUAL COMPUTER | 2015年 / 31卷 / 01期
关键词
Cluster sampling; Adaptive rendering; Feature vector; Polynomial function;
D O I
10.1007/s00371-013-0914-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Monte Carlo ray tracing suffers noise and aliasing because of low sampling rate. We show that sparse samples can be used to generate high quality images based on feature cluster and regression analysis. Our algorithm has two main stages: adaptive sampling and polynomial reconstruction. In sampling stage, rendering space are organized into clusters based on their features. A feature vector is used to distinguish the different features, which contains gradient, variance and position. Clusters are progressively modified by adaptive sampling. In reconstruction stage, we model each cluster by smooth polynomial functions using regression analysis. The final image is synthesized by integrating these functions. The experiments show that our algorithm generates higher quality images than the previous methods.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 50 条
  • [31] Managing deformable objects in cluster rendering
    Convard, T
    Bourdot, P
    Vézien, JM
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 290 - 297
  • [32] A sweeping algorithm for cluster hair rendering
    Tao Wang
    Xue Dong Yang
    [J]. The Visual Computer, 2003, 19 : 187 - 204
  • [33] A sweeping algorithm for cluster hair rendering
    Wang, T
    Yang, XD
    [J]. VISUAL COMPUTER, 2003, 19 (2-3): : 187 - 204
  • [34] Adaptive Laplacian Eigenfunctions as Bases for Regression Analysis
    Ding, Lei
    Bai, Xiaole
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3654 - 3657
  • [35] Switching regression analysis by fuzzy adaptive network
    Cheng, CB
    Lee, ES
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 128 (03) : 647 - 663
  • [36] ADAPTIVE ESTIMATION OF REGRESSION-MODELS VIA MOMENT RESTRICTIONS
    NEWEY, WK
    [J]. JOURNAL OF ECONOMETRICS, 1988, 38 (03) : 301 - 339
  • [37] Robust multi-view learning via adaptive regression
    Jiang, Bingbing
    Xiang, Junhao
    Wu, Xingyu
    Wang, Yadi
    Chen, Huanhuan
    Cao, Weiwei
    Sheng, Weiguo
    [J]. INFORMATION SCIENCES, 2022, 610 : 916 - 937
  • [38] (Nearly) Optimal Private Linear Regression via Adaptive Clipping
    Varshney, Prateek
    Thakurta, Abhradeep
    Jain, Prateek
    [J]. Proceedings of Machine Learning Research, 2022, 178 : 1126 - 1166
  • [39] Sequential adaptive nonparametric regression via H-splines
    Dias, R
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1999, 28 (02) : 501 - 515
  • [40] Nonparametric regression with adaptive truncation via a convex hierarchical penalty
    Haris, Asad
    Shojaie, Ali
    Simon, Noah
    [J]. BIOMETRIKA, 2019, 106 (01) : 87 - 107