Statistical comparisons of multiple classifiers

被引:0
|
作者
Chen, DC [1 ]
Chen, XZ [1 ]
机构
[1] Uniformed Serv Univ Hlth Sci, Bethesda, MD 20814 USA
关键词
pattern recognition; hypothesis testing; Cochran's Q statistic; multiple comparison procedure;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses the issue of comparing multiple classifiers, applied to the same test dataset of a classification problem. Assume that the output is 0 if a classifier correctly classifies a test feature point and the output is 1 otherwise. Then all the outputs from a given classifier constitute a sample of 0 and 1, and all the samples are correlated. From these dependent samples, we use Cochran's Q statistic, as an overall test statistic, to detect whether or not the error rates of the classifiers are significantly different. When, the null hypothesis that the error rates are equal is rejected, a thorough analysis of the nature of the error rates, such as the ranking of the error rates, is undertaken. For this purpose, we employ the Scheffe and Bonferroni multiple comparison procedures, based on dependent samples. We also use examples to demonstrate how to make these statistical comparisons.
引用
收藏
页码:97 / 101
页数:5
相关论文
共 50 条
  • [31] The likelihood as statistical evidence in multiple comparisons in clinical trials: No free lunch
    Korn, EL
    Freidlin, B
    BIOMETRICAL JOURNAL, 2006, 48 (03) : 346 - 355
  • [32] A predictive approach to measuring the strength of statistical evidence for single and multiple comparisons
    Bickel, David R.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 610 - 631
  • [33] How multiple statistical comparisons can produce false positive findings
    Sullivan, Patrick
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2006, 141B (07) : 728 - 728
  • [34] Accounting for Multiple Comparisons in Statistical Analysis of the Extensive Bioassay Data on Glyphosate
    Crump, Kenny
    Crouch, Edmund
    Zelterman, Daniel
    Crump, Casey
    Haseman, Joseph
    TOXICOLOGICAL SCIENCES, 2020, 175 (02) : 156 - 167
  • [35] Domain adaptation for statistical classifiers
    Daumé, H
    Marcu, D
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2006, 26 (101-126): : 101 - 126
  • [36] Crisp Classifiers vs. Fuzzy Classifiers: A Statistical Study
    Jara, J. L.
    Acevedo-Crespo, Rodrigo
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2009, 5495 : 440 - 447
  • [37] Performance Comparisons of Classifiers Applied to Electroencephalogram Signals
    Santos, Alisson Ravaglio
    Becchi, Gabriel Chaves
    de Vasconcelos Segundo, Emerson Hochsteiner
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    BRAIN FUNCTION ASSESSMENT IN LEARNING, 2017, 10512 : 207 - 208
  • [38] Significance of non-parametric statistical tests for comparison of classifiers over multiple datasets
    Singh, Pawan Kumar
    Sarkar, Ram
    Nasipuri, Mita
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2016, 7 (05) : 410 - 442
  • [39] Feature-Aided Multiple Hypothesis Tracking Using Topological and Statistical Behavior Classifiers
    Rouse, David
    Watkins, Adam
    Porter, David
    Harer, John
    Bendich, Paul
    Strawn, Nate
    Munch, Elizabeth
    DeSena, Jonathan
    Clarke, Jesse
    Gilbert, Jeff
    Chin, Sang
    Newman, Andrew
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXIV, 2015, 9474
  • [40] Experimental Comparisons of Multi-class Classifiers
    Li, Lin
    Li, Lin
    Wu, Yue
    Ye, Mao
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2015, 39 (01): : 71 - 85