Realizing Solid-Phase Reaction in Li-S Batteries via Localized High-Concentration Carbonate Electrolyte

被引:74
|
作者
He, Mengxue [1 ,2 ]
Li, Xia [3 ]
Yang, Xiaofei [1 ]
Wang, Changhong [1 ]
Zheng, Matthew Liu [1 ]
Li, Ruying [1 ]
Zuo, Pengjian [2 ]
Yin, Geping [2 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 589, Canada
[2] Harbin Inst Technol, MIIT Key Lab Crit Mat Technol New Energy Convers, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[3] Concordia Univ, Dept Chem & Mat Engn, Montreal, PQ H4B 1R6, Canada
基金
加拿大创新基金会; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
carbonate electrolyte; lithium sulfur batteries; localized high concentration electrolytes; solid-phase conversion; LITHIUM-SULFUR BATTERIES; CATHODE MATERIALS; PERFORMANCE; POLYSULFIDES; CONVERSION; MECHANISM; DISCHARGE; SOLVENTS; ETHER; SAFE;
D O I
10.1002/aenm.202101004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur (Li-S) batteries have attracted significant attention because of their high theoretical energy density and low cost. However, their poor cyclability caused by the shuttle effect in ether-based electrolytes remains a great challenge for their practical application. Herein, a novel electrolyte is proposed by combining widely used carbonate solvents diethyl carbonate/fluoroethylene carbonate and inert diluent 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether for Li-S batteries based on typical mesoporous carbon/sulfur (KB/S) materials. Differing from the conventional dissolution-precipitation mechanism, the sulfur cathodes demonstrate a solid-phase reaction route in the developed electrolyte, which is realized with the assistance of an in situ formed compact cathode electrolyte interface (CEI) film on the cathode caused by the nucleophilic reaction between lithium polysulfides (LiPSs) and carbonate solvents. The formed CEI film can effectively block the infiltration of carbonate solvents and can completely suppress the generation of LiPSs, thus eliminating the shuttle effect. As a result, the KB/S electrode demonstrates a stable cycling performance at 2 C by maintaining a discharge capacity of 570 mAh g(-1) after 600 cycles, corresponding to an average capacity decay of 0.057% per cycle. More significantly, this strategy provides a new pathway toward future development of Li-S batteries based on solid-phase conversion.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries
    Zheng, Jing
    Fan, Xiulin
    Ji, Guangbin
    Wang, Haiyang
    Hou, Singyuk
    DeMella, Kerry C.
    Raghavan, Srinivasa R.
    Wang, Jing
    Xu, Kang
    Wang, Chunsheng
    NANO ENERGY, 2018, 50 : 431 - 440
  • [22] Reaction Mechanism Optimization of Solid-State Li-S Batteries with a PEO-Based Electrolyte
    Fang, Ruyi
    Xu, Henghui
    Xu, Biyi
    Li, Xinyu
    Li, Yutao
    Goodenough, John B.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
  • [23] Rationally Design a Sulfur Cathode with Solid-Phase Conversion Mechanism for High Cycle-Stable Li-S Batteries
    He, Bin
    Rao, Zhixiang
    Cheng, Zexiao
    Liu, Dongdong
    He, Danqi
    Chen, Jie
    Miao, Ziyun
    Yuan, Lixia
    Li, Zhen
    Huang, Yunhui
    ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [24] A safe and superior propylene carbonate-based electrolyte with high-concentration Li salt
    Ding, Yuanlei
    Yun, Jiaojiao
    Liu, Hongmei
    Wan, Zhongming
    Shen, Ming
    Zhang, Li
    Qu, Qunting
    Zheng, Honghe
    PURE AND APPLIED CHEMISTRY, 2014, 86 (05) : 585 - 591
  • [25] Localized high-concentration electrolyte enabled by a novel ester diluent for lithium metal batteries
    Zhu, Meng
    Jiao, Xiaojuan
    Wang, Wenwei
    Chen, Haiwei
    Li, Fengjiao
    CHEMICAL COMMUNICATIONS, 2023, 59 (06) : 712 - 715
  • [26] Localized High-Concentration Electrolyte (LHCE) for Fast Charging Lithium-Ion Batteries
    Yang, Jingru
    Shi, Xixiu
    Wang, Wenyang
    Liu, Zhaoping
    Shen, Cai
    BATTERIES-BASEL, 2023, 9 (03):
  • [27] Localized High-Concentration Electrolyte in Li-Mediated Nitrogen Reduction for Ammonia Synthesis
    Yun, Hyeju
    Lim, Chaeeun
    Kwon, Minjun
    Lee, Dongmin
    Yun, Yongju
    Seo, Dong-Hwa
    Yong, Kijung
    ADVANCED MATERIALS, 2024,
  • [28] Bifunctional Localized High-Concentration Electrolyte for the Fast Kinetics of Lithium Batteries at Low Temperatures
    Lai, Pengbin
    Deng, Xiaodie
    Zhang, Yaqi
    Li, Jialin
    Hua, Haiming
    Huang, Boyang
    Zhang, Peng
    Zhao, Jinbao
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) : 31020 - 31031
  • [29] Stabilizing the Garnet Solid-Electrolyte/Polysulfide Interface in Li-S Batteries
    Fu, Kun Kelvin
    Gong, Yunhui
    Xu, Shaomao
    Zhu, Yizhou
    Li, Yiju
    Dai, Jiaqi
    Wang, Chengwei
    Liu, Boyang
    Pastel, Glenn
    Xie, Hua
    Yao, Yonggang
    Mo, Yifei
    Wachsman, Eric
    Hu, Liangbing
    CHEMISTRY OF MATERIALS, 2017, 29 (19) : 8037 - 8041
  • [30] High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries
    Jin, Yang
    Liu, Kai
    Lang, Jialiang
    Jiang, Xin
    Zheng, Zhikun
    Su, Qinghe
    Huang, Zeya
    Long, Yuanzheng
    Wang, Chang-an
    Wu, Hui
    Cui, Yi
    JOULE, 2020, 4 (01) : 262 - 274