Positivity properties for the clamped plate boundary problem on the ellipse and strip

被引:1
|
作者
Render, Hermann [1 ]
Ghergu, Marius [1 ]
机构
[1] Natl Univ Ireland Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
关键词
Biharmonic operator; positive polynomial data; positive solutions; Fischer operator; MSC (2010) 35J40; 35J08; 31A30; 31B30; EQUATIONS; GOURSAT;
D O I
10.1002/mana.201100045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The positivity preserving property for the biharmonic operator with Dirichlet boundary condition is investigated. We discuss here the case where the domain is an ellipse (that may degenerate to a strip) and the data is a polynomial function. We provide various conditions for which the positivity is preserved.
引用
收藏
页码:1052 / 1062
页数:11
相关论文
共 50 条
  • [21] New Universal Inequalities for Eigenvalues of a Clamped Plate Problem
    Jin, Yiling
    Pu, Shiyun
    Wei, Yuxia
    He, Yue
    POTENTIAL ANALYSIS, 2024, 61 (04) : 597 - 623
  • [22] BOUNDARY LAYER ON THE FLAT PLATE WITH ROUGHNESS STRIP
    Skala, Vladislav
    TOPICAL PROBLEMS OF FLUID MECHANICS 2021, 2021, : 110 - 115
  • [23] Application of variational methods to a rectangular clamped plate problem
    Khan, Y.
    Tiwari, P.
    Ali, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (04) : 862 - 869
  • [24] Estimates for lower order eigenvalues of a clamped plate problem
    Cheng, Qing-Ming
    Huang, Guangyue
    Wei, Guoxin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) : 409 - 416
  • [25] The role of positive boundary data in generalized clamped plate equations
    Grunau, HC
    Sweers, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (03): : 420 - 435
  • [26] JUSTIFICATION OF THE BOUNDARY-CONDITIONS OF A CLAMPED PLATE BY AN ASYMPTOTIC ANALYSIS
    CIARLET, PG
    LEDRET, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (20): : 1015 - 1018
  • [27] The role of positive boundary data in generalized clamped plate equations
    H.-Ch. Grunau
    G. Sweers
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 420 - 435
  • [28] A PROBLEM OF BOUNDARY CONTROLLABILITY FOR A PLATE
    Arena, Orazio
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (04): : 557 - 562
  • [29] DYNAMIC PROBLEM OF A CRACK IN A PLATE STRIP.
    Kuhn, G.
    Matczynski, M.
    Rozprawy Inzynierskie, 1974, 22 (03): : 469 - 485
  • [30] Lower bounds for eigenvalues of Laplacian operator and the clamped plate problem
    Ji, Zhengchao
    Xu, Hongwei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)