Mode coupling in two-dimensional magnetohydrodynamic flows

被引:4
|
作者
Nijboer, RJ [1 ]
Goedbloed, JP [1 ]
机构
[1] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands
关键词
D O I
10.1017/S0022377898007430
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The spectrum of incompressible waves and instabilities of two-dimensional plasma geometries with background flow is calculated. The equilibrium is solved numerically by the recently developed program FLow Equilibrium Solver (FLES). The spectra of the equilibria are computed by means of another ne vcr program, the INcompressible 2-dimensional FLow Eigenvalue Solver (IN2FLES). Magnetic instabilities and instabilities driven by the the two-dimensionality and the flow are found. For linear equilibria, the eigenvalues for elliptical geometries remain close to the curves on which the eigenvalues for circular geometries lie. These curves may be found for unbounded domains by a calculation in Fourier space [see Lifschitz, A. In: Proceedings of 1995 International Workshop on Operator Theory and Applications (ed. R. Mennicken and C. Tretter), pp. 97-117, Birkhauser, Boston, 1998]. Here the relation between a new continuous spectrum of unbounded domains and the discrete spectrum of bounded domains is investigated. Finally, it is found that the two-dimensionality and the background flow may lead to an overstable cluster point.
引用
收藏
页码:241 / 262
页数:22
相关论文
共 50 条
  • [21] GLOBAL WELL-POSEDNESS OF TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC FLOWS WITH PARTIAL DISSIPATION AND MAGNETIC DIFFUSION
    Du, Lili
    Zhou, Deqin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) : 1562 - 1589
  • [22] Local approximation for contour dynamics in effectively two-dimensional ideal electron-magnetohydrodynamic flows
    Ruban, VP
    Senchenko, SL
    PHYSICA SCRIPTA, 2004, 69 (03) : 227 - 233
  • [23] On the integrability of two-dimensional flows
    Chavarriga, J
    Giacomini, H
    Giné, J
    Llibre, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) : 163 - 182
  • [24] TWO-DIMENSIONAL GAVRILOV FLOWS
    Sharafutdinov, V. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (01): : 247 - 258
  • [25] General formulation and exact solution for two-dimensional field-aligned magnetohydrodynamic equilibrium flows
    Hau, LN
    PHYSICS OF PLASMAS, 1996, 3 (03) : 1113 - 1119
  • [26] DYNAMICS OF DECAYING TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE
    BISKAMP, D
    WELTER, H
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (10): : 1964 - 1979
  • [27] On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
    De Ploey, A
    Van der Linden, RAM
    Beliën, AJC
    PHYSICS OF PLASMAS, 2000, 7 (06) : 2354 - 2365
  • [28] Magnetic Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence
    Servidio, S.
    Matthaeus, W. H.
    Shay, M. A.
    Cassak, P. A.
    Dmitruk, P.
    PHYSICAL REVIEW LETTERS, 2009, 102 (11)
  • [29] Two-dimensional electron-magnetohydrodynamic instabilities
    Califano, F
    Prandi, R
    Pegoraro, F
    Bulanov, SV
    PHYSICS OF PLASMAS, 1999, 6 (06) : 2332 - 2339
  • [30] Blow-up criterion for two-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows
    Lu, Li
    Chen, Yajin
    Huang, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 139 : 55 - 74