A Review of Explainable Artificial Intelligence

被引:3
|
作者
Lin, Kuo-Yi [1 ,2 ]
Liu, Yuguang [1 ]
Li, Li [1 ,2 ]
Dou, Runliang [3 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 201804, Peoples R China
[3] Tianjin Univ, Sch Management, Tianjin 300072, Peoples R China
关键词
Explainable; Machine learning; Classification; Application; MODEL;
D O I
10.1007/978-3-030-85910-7_61
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence developed rapidly, while people are increasingly concerned about internal structure in machine learning models. Starting from the definition of interpretability and historical process of interpretability model, this paper summarizes and analyzes the existing interpretability methods according to the two dimensions of model type and model time based on the objectives of interpretability model and different categories. With the help of the existing interpretable methods, this paper summarizes and analyzes its application value to the society analyzes the reasons why its application is hindered. This paper concretely analyzes and summarizes the applications in industrial fields, including model debugging, feature engineering and data collection. This paper aims to summarizes the shortcomings of the existing interpretability model, and proposes some suggestions based on them. Starting from the nature of interpretability model, this paper analyzes and summarizes the disadvantages of the existing model evaluation index, and puts forward the quantitative evaluation index of the model from the definition of interpretability. Finally, this paper summarizes the above and looks forward to the development direction of interpretability models.
引用
收藏
页码:574 / 584
页数:11
相关论文
共 50 条
  • [21] Explainable and interpretable artificial intelligence in medicine: a systematic bibliometric review
    Frasca M.
    La Torre D.
    Pravettoni G.
    Cutica I.
    [J]. Discover Artificial Intelligence, 4 (1):
  • [22] On the Need of an Explainable Artificial Intelligence
    Zanni-Merk, Cecilia
    [J]. INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT I, 2020, 1050 : 3 - 3
  • [23] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [24] Explainable and responsible artificial intelligence
    Christian Meske
    Babak Abedin
    Mathias Klier
    Fethi Rabhi
    [J]. Electronic Markets, 2022, 32 : 2103 - 2106
  • [25] Explainable artificial intelligence in pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    [J]. PATHOLOGIE, 2024,
  • [26] Explainable artificial intelligence in skin cancer recognition: A systematic review
    Hauser, Katja
    Kurz, Alexander
    Haggenmueller, Sarah
    Maron, Roman C.
    von Kalle, Christof
    Utikal, Jochen S.
    Meier, Friedegund
    Hobelsberger, Sarah
    Gellrich, Frank F.
    Sergon, Mildred
    Hauschild, Axel
    French, Lars E.
    Heinzerling, Lucie
    Schlager, Justin G.
    Ghoreschi, Kamran
    Schlaak, Max
    Hilke, Franz J.
    Poch, Gabriela
    Kutzner, Heinz
    Berking, Carola
    Heppt, Markus, V
    Erdmann, Michael
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Sondermann, Wiebke
    Goebeler, Matthias
    Schilling, Bastian
    Kather, Jakob N.
    Froehling, Stefan
    Lipka, Daniel B.
    Hekler, Achim
    Krieghoff-Henning, Eva
    Brinker, Titus J.
    [J]. EUROPEAN JOURNAL OF CANCER, 2022, 167 : 54 - 69
  • [27] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [28] Explainable Artificial Intelligence: A Survey
    Dosilovic, Filip Karlo
    Brcic, Mario
    Hlupic, Nikica
    [J]. 2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 210 - 215
  • [29] Explainable artificial intelligence in ophthalmology
    Tan, Ting Fang
    Dai, Peilun
    Zhang, Xiaoman
    Jin, Liyuan
    Poh, Stanley
    Hong, Dylan
    Lim, Joshua
    Lim, Gilbert
    Teo, Zhen Ling
    Liu, Nan
    Ting, Daniel Shu Wei
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2023, 34 (05) : 422 - 430
  • [30] A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques
    Nazar, Mobeen
    Alam, Muhammad Mansoor
    Yafi, Eiad
    Su'ud, Mazliham Mohd
    [J]. IEEE ACCESS, 2021, 9 : 153316 - 153348