Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction

被引:119
|
作者
Li, Ying [1 ]
Li, Fu-Min [1 ]
Meng, Xin-Ying [2 ]
Wu, Xin-Ru [2 ]
Li, Shu-Ni [1 ]
Chen, Yu [2 ]
机构
[1] Shaanxi Normal Univ, Sch Chem & Chem Engn, Key Lab Macromol Sci Shaanxi Prov, Xian 710062, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Shaanxi Key Lab Adv Energy Devices, Key Lab Appl Surface & Colloid Chem,Minist Educ, Xian 710062, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyanogel; Oxygen evolution reaction; Holey nanosheets; Defected atoms; EFFICIENT BIFUNCTIONAL ELECTROCATALYST; HYDROXIDE NANOSHEETS; WATER OXIDATION; NI FOAM; GRAPHENE; VACANCIES; CATALYST; HYBRID; EXFOLIATION; ELECTRODES;
D O I
10.1016/j.nanoen.2018.10.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen evolution reaction (OER) on the anode is a vital electrocatalytic reaction in the field of energy conversion. Currently, transition metals-based nanomaterials are promising Ir/Ru-alternative OER electrocatalysts in alkaline media. In this work, we report that in-situ direct growth of atomically thick Fe doped Co3O4 holey nanosheets on nickel foam (Fe-Co3O4 H-NSs/NF) using a simple cyanogel-NaBH4 route, which effectively avoids the tedious post-etch process of nanosheets using plasma, acid, alkali, and so on. Benefiting from ultrathin thickness (1.5 nm), numerous holes, and synergistic effect between Co and Fe atoms, Fe-Co3O4 H-NSs/NF provide a large specific surface area (199.12m(2) g(-1)) and highly active catalytic sites for the OER. Meanwhile, nickel foam substrate with three-dimensionally porous structure and high conductivity accelerates molecules/ions/gases transportation and electron transfer. Consequently, Fe-Co3O4 H-NSs/NF with optimal Co/Fe composition show super electrocatalytic performance for the OER, including an overpotential as small as similar to 204 mV at 10 mA cm(-2) current density and a small Tafel slope of 38 mV dec(-1), which is much better than commercial RuO2 nanoparticles.
引用
收藏
页码:238 / 250
页数:13
相关论文
共 50 条
  • [21] Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction
    Yoon, Sanghwa
    Yun, Jung-Yeul
    Lim, Jae-Hong
    Yoo, Bongyoung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 : 964 - 969
  • [22] Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction
    Hao, Zewei
    Wei, Pengkun
    Kang, Hongzhi
    Yang, Yang
    Li, Jing
    Chen, Xue
    Guo, Donggang
    Liu, Lu
    NANOTECHNOLOGY, 2020, 31 (43)
  • [23] Iron-Doped Nickel Phosphide Nanosheets InSitu Grown on Nickel Submicrowires as Efficient Electrocatalysts for Oxygen Evolution Reaction
    Chen, Jiahui
    Li, Yunming
    Sheng, Guoqing
    Xu, Lu
    Ye, Huangqing
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    CHEMCATCHEM, 2018, 10 (10) : 2248 - 2253
  • [24] Electrochemically Controlled Synthesis of Ultrathin Nickel Hydroxide Nanosheets for Electrocatalytic Oxygen Evolution
    Cao, Li-Ming
    Cao, Qing-Cai
    Zhang, Jia
    Zhu, Xuan-Yi
    Sun, Rong-Zhi
    Du, Zi-Yi
    He, Chun-Ting
    INORGANIC CHEMISTRY, 2021, 60 (05) : 3365 - 3374
  • [25] Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction
    Liu, Yinmeng
    Yang, Duo
    Liu, Zhongyi
    Yang, Jing-He
    JOURNAL OF POWER SOURCES, 2020, 461 (461)
  • [26] Polymeric cobalt phthalocyanine on nickel foam as an efficient electrocatalyst for oxygen evolution reaction
    Shantharaja, Veeresh A.
    Giddaerappa, Koodlur Sannegowda
    Sajjan, Veeresh A.
    Lokesh, Koodlur Sannegowda
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (92) : 35850 - 35861
  • [27] Ultrathin NiFeZn-MOF nanosheets containing few metal oxide nanoparticles grown on nickel foam for efficient oxygen evolution reaction of electrocatalytic water splitting
    Wei, Xuedong
    Li, Na
    Liu, Nan
    ELECTROCHIMICA ACTA, 2019, 318 : 957 - 965
  • [28] Magnetic field- assisted synthesis of iron-doped cobalt oxide with abundant oxygen defects as an electrocatalyst for oxygen evolution reaction
    Liu, Jiang
    Sun, Hongtao
    Wang, Long
    Huang, Yukun
    Cao, Yijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1013
  • [29] Bimetallic iron cobalt oxide nanoclusters embedded on three-dimensional flower-like iron cobalt oxide nanosheets for improved oxygen evolution reaction
    Shankar, Ayyavu
    Maduraiveeran, Govindhan
    ENERGY ADVANCES, 2022, 1 (08): : 562 - 571
  • [30] Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction
    Deng, Xiaohui
    Ozturk, Secil
    Weidenthaler, Claudia
    Tuysuz, Harun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (25) : 21225 - 21233