Leapover lengths and first passage time statistics for levy flights

被引:110
|
作者
Koren, Tal [1 ]
Lomholt, Michael A.
Chechkin, Aleksei V.
Klafter, Joseph
Metzler, Ralf
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[3] Inst Theoret Phys, NSC, KIPT, UA-61108 Kharkov, Ukraine
关键词
D O I
10.1103/PhysRevLett.99.160602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact results for the first passage time and leapover statistics of symmetric and one-sided Levy flights (LFs) are derived. LFs with a stable index alpha are shown to have leapover lengths that are asymptotically power law distributed with an index alpha for one-sided LFs and, surprisingly, with an index alpha/2 for symmetric LFs. The first passage time distribution scales like a power law with an index 1/2 as required by the Sparre-Andersen theorem for symmetric LFs, whereas one-sided LFs have a narrow distribution of first passage times. The exact analytic results are confirmed by extensive simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On the first passage time and leapover properties of Levy motions
    Koren, T.
    Chechkin, A. V.
    Klafter, J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) : 10 - 22
  • [2] First passage time moments of asymmetric Levy flights
    Padash, Amin
    Chechkin, Aleksei, V
    Dybiec, Bartlomiej
    Magdziarz, Marcin
    Shokri, Babak
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (27)
  • [3] First passage and first hitting times of Levy flights and Levy walks
    Palyulin, Vladimir V.
    Blackburn, George
    Lomholt, Michael A.
    Watkins, Nicholas W.
    Metzler, Ralf
    Klages, Rainer
    Chechkin, Aleksei V.
    NEW JOURNAL OF PHYSICS, 2019, 21 (10):
  • [4] Optimizing leapover lengths of Lévy flights with resetting
    Radice, Mattia
    Cristadoro, Giampaolo
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [5] First passage and arrival time densities for Levy flights and the failure of the method of images
    Chechkin, AV
    Metzler, R
    Gonchar, VY
    Klafter, J
    Tanatarov, LV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (41): : L537 - L544
  • [6] First-passage properties of asymmetric Levy flights
    Padash, Amin
    Chechkin, Aleksei V.
    Dybiec, Bartlomiej
    Pavlyukevich, Ilya
    Shokri, Babak
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (45)
  • [7] First passage times of Levy flights coexisting with subdiffusion
    Koren, Tal
    Klafter, Joseph
    Magdziarz, Marcin
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [8] Universal first-passage properties of discrete-time random walks and Levy flights on a line: Statistics of the global maximum and records
    Majumdar, Satya N.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (20) : 4299 - 4316
  • [9] First-passage-time exponent for higher-order random walks: Using Levy flights
    Schwarz, JM
    Maimon, R
    PHYSICAL REVIEW E, 2001, 64 (01): : 10
  • [10] Statistics of residence time for Levy flights in unstable parabolic potentials
    Dubkov, Alexander A.
    Dybiec, Bartlomiej
    Spagnolo, Bernardo
    Kharcheva, Anna
    Guarcello, Claudio
    Valenti, Davide
    PHYSICAL REVIEW E, 2020, 102 (04)