Optimizing leapover lengths of Lévy flights with resetting

被引:1
|
作者
Radice, Mattia [1 ]
Cristadoro, Giampaolo [2 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20126 Milan, Italy
关键词
LEVY FLIGHTS; SEARCH; MAXIMUM;
D O I
10.1103/PhysRevE.110.L022103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a one-dimensional search process under stochastic resetting conditions. A target is located at b 0 and a searcher, starting from the origin, performs a discrete-time random walk with independent jumps drawn from a heavy-tailed distribution. Before each jump, there is a given probability r of restarting the walk from the initial position. The efficiency of a "myopic search"-in which the search stops upon crossing the target for the first time-is usually characterized in terms of the first-passage time r. On the other hand, great relevance is encapsulated by the leapover length l = xr - b, which measures how far from the target the search ends. For symmetric heavy-tailed jump distributions, in the absence of resetting the average leapover is always infinite. Here we show instead that resetting induces a finite average leapover b(r) pound if the mean jump length is finite. We compute exactly b(r) pound and determine the condition under which resetting allows for nontrivial optimization, i.e., for the existence of r & lowast; such that b(r pound & lowast;) is minimal and smaller than the average leapover of the single jump.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Lévy flights and Lévy walks under stochastic resetting
    Zbik, Bartosz
    Dybiec, Bartlomiej
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [2] Leapover lengths and first passage time statistics for levy flights
    Koren, Tal
    Lomholt, Michael A.
    Chechkin, Aleksei V.
    Klafter, Joseph
    Metzler, Ralf
    PHYSICAL REVIEW LETTERS, 2007, 99 (16)
  • [3] L,vy flights and L,vy-Schrodinger semigroups
    Garbaczewski, Piotr
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2010, 8 (05): : 699 - 708
  • [4] L,vy flights in evolutionary ecology
    Jourdain, Benjamin
    Meleard, Sylvie
    Woyczynski, Wojbor A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) : 677 - 707
  • [5] Lévy flights in evolutionary ecology
    Benjamin Jourdain
    Sylvie Méléard
    Wojbor A. Woyczynski
    Journal of Mathematical Biology, 2012, 65 : 677 - 707
  • [6] Scintillations and Interstellar Lévy Flights
    Stanislav Boldyrev
    Carl R. Gwinn
    Astrophysics and Space Science, 2004, 292 : 147 - 153
  • [7] Lévy Flights in a Steep Potential Well
    Aleksei V. Chechkin
    Vsevolod Yu. Gonchar
    Joseph Klafter
    Ralf Metzler
    Leonid V. Tanatarov
    Journal of Statistical Physics, 2004, 115 : 1505 - 1535
  • [8] Numerical solutions for asymmetric Lévy flights
    Carla Jesus
    Ercília Sousa
    Numerical Algorithms, 2021, 87 : 967 - 999
  • [9] A fractional diffusion equation to describe Lévy flights
    Chaves, A.S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239 (1-2): : 13 - 16
  • [10] Truncated L,vy flights and generalized Cauchy processes
    Lubashevsky, I. A.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (02): : 189 - 195