A passive camera based determination of a non-cooperative and unknown satellite's pose and shape

被引:22
|
作者
Volpe, Renato [1 ]
Palmerini, Giovanni B. [2 ]
Sabatini, Marco [3 ]
机构
[1] Sapienza Univ Roma, Dept Mech & Aerosp Engn, Rome, Italy
[2] Sapienza Univ Roma, Scuola Ingn Aerosp, Rome, Italy
[3] Sapienza Univ Roma, Dept Astronaut Elect & Energet Engn, Rome, Italy
关键词
D O I
10.1016/j.actaastro.2018.06.061
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The relevance of autonomy in space systems during rendezvous and docking operations has been lately increasing. At the scope, a robust GNC architecture is required, which strictly relies on the navigation system's performance and must assure both high efficiency and safety, i.e. low errors and no collisions with the target satellite. One of the most explored fields is the optical navigation one. Using passive optical sensors such as cameras can give high benefit in terms of characterization of the observed scene, thus enlarging the consciousness of what is going on in the mission scenario. The present research investigates the development of a filter which can estimate the shape and relative attitude, position and velocity of a non-cooperative, possibly unknown satellite orbiting around Earth, observed by a camera and a distance sensor mounted on a chaser satellite, whose objective is to successfully complete a docking maneuver. The image taken at a certain time is processed, features are extracted from it and matched with the ones extracted from the image at the previous time step. The matched features along with the relative distance measured by the distance sensor are merged inside an unscented Kalman filter, which predicts, updates and improves the state's estimate throughout the iterations. The expedient used in the filter is to give a 3D characterization to the 2D features used as measurements. The filter estimates the 3D coordinates of these points, i.e. the target's shape, in the camera reference frame, which depend on the target's attitude dynamics and the chaser's relative orbital dynamics. Thus, the target's attitude parameters, i.e. the quaternions, and angular velocity vector, the relative position and velocity vectors and the tracked 3D points are all included in the state vector and estimated by the filter. Subsequently, the 3D point coordinates are determined in the body reference frame. By doing this for all the tracked points, a 3D map of the target can be built.
引用
收藏
页码:805 / 817
页数:13
相关论文
共 50 条
  • [31] A monocular structured light vision method for pose determination of large non-cooperative satellites
    Xue-Hai Gao
    Bin Liang
    Le Pan
    Zhi-Heng Li
    Ying-Chun Zhang
    [J]. International Journal of Control, Automation and Systems, 2016, 14 : 1535 - 1549
  • [32] Pose Estimation of Non-Cooperative Target Coated With MLI
    Wang, Qishuai
    Lei, Ting
    Liu, Xiaofeng
    Cai, Guoping
    Yang, Yifeng
    Jiang, Lihui
    Yu, Zhangwei
    [J]. IEEE ACCESS, 2019, 7 : 153958 - 153968
  • [33] A Monocular Structured Light Vision Method for Pose Determination of Large Non-cooperative Satellites
    Gao, Xue-Hai
    Liang, Bin
    Pan, Le
    Li, Zhi-Heng
    Zhang, Ying-Chun
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (06) : 1535 - 1549
  • [34] Pose Measurement of Non-cooperative Spacecraft by Sensors Fusion
    Guo, Pengyu
    Zhang, Yonghe
    Hu, Qinglei
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3426 - 3431
  • [35] A Pose Measurement Method of a Non-Cooperative Spacecraft Based on point cloud feature
    Li, Peng
    Wang, Mao
    Zhou, Dong
    Lei, Wenxiao
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4977 - 4982
  • [36] Visual pose measurement based on structured light for MAVs in non-cooperative environments
    Wang, Yun-shu
    Liu, Jian-ye
    Zeng, Qing-hua
    Liu, Sheng
    [J]. OPTIK, 2015, 126 (24): : 5444 - 5451
  • [37] PASSIVE ANALYSIS OF NON-COOPERATIVE GSM SIGNALS
    Skokowski, Pawel
    Kanciak, Krzysztof
    Lopatka, Jerzy
    [J]. 2009 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2009, : 242 - 248
  • [38] A new pose estimation method for non-cooperative spacecraft based on point cloud
    Chen, Zhiming
    Li, Lei
    Wu, Yunhua
    Hua, Bing
    Niu, Kang
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2019, 12 (01) : 23 - 41
  • [39] Rectangular-structure-based pose estimation method for non-cooperative rendezvous
    Zhang, Limin
    Zhu, Feng
    Hao, Yingming
    Pan, Wang
    [J]. APPLIED OPTICS, 2018, 57 (21) : 6164 - 6173
  • [40] A Pose Measurement Method of a Non-Cooperative GEO Spacecraft Based on Stereo Vision
    Xu, Wenfu
    Xue, Qiang
    Liu, Houde
    Du, Xiaodong
    Liang, Bin
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 966 - 971