A weighted principal component regression approach for system identification

被引:0
|
作者
Xiao, XS [1 ]
Mukkamala, R [1 ]
Cohen, RJ [1 ]
机构
[1] Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a parametric LTI system identification approach which is based on weighted principal component regression (PCR). It can be shown that this method. asymptotically implements model selection in the frequency domain and allows the data to play a significant role in determining the candidate models. Moreover, the estimates of the optimal model parameters reflect a trade-off between bias and variance to reach a relatively small mean squared prediction error. Compared with the conventional autoregressive exogenous input (ARX), identification, our approach is shown to identify the system's impulse response function more accurately when the input signal is colored.
引用
收藏
页码:206 / 209
页数:4
相关论文
共 50 条
  • [1] Wiener System Identification by Weighted Principal Component Analysis
    Zhang, Qinghua
    Laurain, Vincent
    [J]. 2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 1705 - 1710
  • [2] A weighted-principal component regression method for the identification of physiologic systems
    Xiao, Xinshu
    Mukkamala, Ramakrishna
    Cohen, Richard J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (08) : 1521 - 1530
  • [3] Weighted principal component analysis: a weighted covariance eigendecomposition approach
    Delchambre, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (04) : 3545 - 3555
  • [4] A principal component approach to dynamic regression models
    delMoral, MJ
    Valderrama, MJ
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1997, 13 (02) : 237 - 244
  • [5] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180
  • [6] Principal component regression approach for QT variability estimation
    Karjalainen, P. A.
    Tarvainen, M. P.
    Laitinen, T.
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 1145 - 1147
  • [7] Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
    Vigneau, E
    Devaux, MF
    Qannari, EM
    Robert, P
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (03) : 239 - 249
  • [8] An automatic robust Bayesian approach to principal component regression
    Gagnon, Philippe
    Bedard, Mylene
    Desgagne, Alain
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (01) : 84 - 104
  • [9] Weighted Principal Component Analysis for Wiener System Identification Regularization and non-Gaussian Excitations
    Zhang, Qinghua
    Laurain, Vincent
    Wang, Jiandong
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 602 - 607
  • [10] MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction
    Zhu, Hongtu
    Shen, Dan
    Peng, Xuewei
    Liu, Leo Yufeng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) : 1009 - 1021