A volume averaging approach for asymmetric diffusion in porous media

被引:13
|
作者
Valdes-Parada, Francisco J. [1 ]
Alvarez-Ramirez, Jose [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, DF, Mexico
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 20期
关键词
TRANSPORT; FLOW; SCALE;
D O I
10.1063/1.3594549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Asymmetric diffusion has been observed in different contexts, from transport in stratified and fractured porous media to diffusion of ions and macromolecular solutes through channels in biological membranes. Experimental and numerical observations have shown that diffusion is facilitated in the direction of positive void fraction (i.e., porosity) gradients. This work uses the method of volume averaging in order to obtain effective medium equations for systems with void fraction gradients for passive and diffusive mass transport processes. The effective diffusivity is computed from the solution of an associated closure problem in representative unit cells that allow considering porosity gradients. In this way, the results in this work corroborate previous findings showing that the effective diffusivity exhibits important directional asymmetries for geometries with void fraction gradients. Numerical examples for simple geometries (a section with an obstacle and a channel with varying cross section) show that the diffusion asymmetry depends strongly on the system configuration. The magnitude of this dependence can be quantified from the results in this work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3594549]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Anomalous diffusion in porous media
    Ferreira, J. A.
    Pena, G.
    Romanazzi, G.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (03) : 1850 - 1862
  • [42] MULTICOMPONENT DIFFUSION IN POROUS MEDIA
    HESSE, D
    KODER, J
    CHEMICAL ENGINEERING SCIENCE, 1973, 28 (03) : 807 - 818
  • [43] GAS DIFFUSION IN POROUS MEDIA
    MILLINGTON, RJ
    SCIENCE, 1959, 130 (3367) : 100 - 102
  • [44] On adsorption and diffusion in porous media
    Albers, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (10): : 683 - 690
  • [45] DIFFUSION IN AGGREGATED POROUS MEDIA
    MILLINGTON, RJ
    SHEARER, RC
    SOIL SCIENCE, 1971, 111 (06) : 372 - +
  • [46] DIFFUSION IN POROUS-MEDIA
    ELNASHAI.SS
    CHEMICAL ENGINEERING SCIENCE, 1974, 29 (10) : 2133 - 2133
  • [47] A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes
    Zabaras, N
    Samanta, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (06) : 1103 - 1138
  • [48] Solving the Nernst-Planck Equation in Heterogeneous Porous Media With Finite Volume Methods: Averaging Approaches at Interfaces
    Tournassat, Christophe
    Steefel, Carl, I
    Gimmi, Thomas
    WATER RESOURCES RESEARCH, 2020, 56 (03)
  • [49] Asymmetric invasion in anisotropic porous media
    Maggiolo, Dario
    Picano, Francesco
    Toschi, Federico
    PHYSICAL REVIEW E, 2021, 104 (04)
  • [50] DIFFUSION TIME-LAG IN POROUS MEDIA WITH DEAD-END PORE VOLUME
    GOODKNIGHT, R
    FATT, I
    JOURNAL OF PHYSICAL CHEMISTRY, 1961, 65 (10): : 1709 - &