The Cr(III)-organic complexes formed between Cr(III) and multifunctional group ligands, such as poly-acrylate, are highly water soluble and difficult to be removed from wastewater by common treatments. A novel strategy for efficiently removing Cr(III)-poly (acrylic acid) complex (Cr(III)-PAA) from wastewater without introducing secondary pollution is proposed using a coprecipitation method with polyvalent metal ions. Al(III), Fe(III), Zr(IV), and Ti(IV) were combined with the carboxyl of Cr(III)-PAA to decrease hydrophilia and achieve fast and efficient coprecipitation. Cr(III)-PAA was efficiently removed from wastewater by using these polyvalent metal ions, especially at low pH, where the ions exist as monomer. The residual concentration of Cr(III) in treated wastewater under the optimized experimental condition was less than 1.0 mg/L. No Cr(VI) and negligible amount of polyvalent metal ions were detected in the treated wastewater, indicating that almost all of the ions coprecipitated with Cr(III)-PAA. No secondary pollution also occurred. The high reactivity between the polyvalent metal ions and Cr(III)-PAA and the sharp decrease in the hydrophilia of the complex contributed to its highly efficient removal from wastewater. Actual tannery wastewater containing Cr(III)-organic complexes with high solubility and stability was treated through coprecipitation with Al(III). A high Cr(III) removal efficiency of 99.0% was obtained. This work provides new insights into the removal of soluble Cr(III)-organic complexes from wastewater by using an environment-friendly and cost-effective method. (C) 2020 Elsevier Ltd. All rights reserved.
机构:
China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
Jia, Chaomin
Wang, Jianbing
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
Wang, Jianbing
Wang, Huijiao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
Wang, Huijiao
Zhu, Sichao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
Zhu, Sichao
Zhang, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Polytech, Beijing 100176, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
Zhang, Xiaohui
Wang, Yuxiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Soc Urban Studies, Beijing 100835, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
机构:
Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R ChinaSichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
Yi, D
Qi, W
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R ChinaSichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China