On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set

被引:41
|
作者
Mendel, JM [1 ]
机构
[1] Univ So Calif, Inst Signal & Image Proc, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
D O I
10.1016/j.ins.2004.04.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computing the centroid of a type-2 fuzzy set (T2 FS) is an important operation for such sets. For an interval T2 FS, the centroid can be computed by using two iterative procedures that were developed by Karnik and Mendel [2]. In this paper, we prove that if the footprint of uncertainty for an interval T2 FS is symmetrical about the primary variable y at y = m, then the centroid is also symmetrical about y = m and its defuzzified value equals m. As a consequence of this, computation of the centroid for such a T2 FS is reduced by 50%, and the importance of obtaining a non-symmetrical interval T2 FS prior to defuzzification is demonstrated. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:417 / 430
页数:14
相关论文
共 50 条
  • [21] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    S. Sharan
    B. K. Sharma
    Kavikumar Jacob
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 1505 - 1526
  • [22] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    Sharan, S.
    Sharma, B. K.
    Jacob, Kavikumar
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1505 - 1526
  • [23] Fuzzistics for Interval Type-2 Fuzzy Sets Using Centroid as Measure of Uncertainty
    Nie, Maowen
    Tan, Woei Wan
    [J]. PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON ADVANCES IN TYPE-2 FUZZY LOGIC SYSTEMS (T2FUZZ), 2013, : 23 - 30
  • [24] On the relationship between the centroid and the footprint of uncertainty of Interval Type-2 fuzzy numbers
    Carlos Figueroa-Garcia, Juan
    Neruda, Roman
    Chalco-Cano, Yurilev
    Roman-Flores, Heriberto
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [25] Type-reduction of the discretised interval type-2 fuzzy set
    Greenfield, Sarah
    Chiclana, Francisco
    John, Robert
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 738 - 743
  • [26] Interval Type-2 Fuzzy Set Extension of DEMATEL Method
    Hosseini, Mitra Bokaei
    Tarokh, Mohammad Jafar
    [J]. COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 157 - 165
  • [27] Closed Form Formulas For Computing The Centroid of A General Type-2 Fuzzy Set
    Nie, Maowen
    Tan, Woei Wan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [28] Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set
    Mendel, Jerry M.
    Liu, Feilong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (02) : 309 - 320
  • [29] Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set
    Liu, Xinwang
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (04) : 652 - 665
  • [30] Studies on Centroid Type-reduction Algorithms for Interval Type-2 Fuzzy Logic Systems
    Chen, Yang
    Wang, Dazhi
    [J]. PROCEEDINGS 2015 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING BDCLOUD 2015, 2015, : 344 - 349