Parametric Study of Simulated Randomly Rough Surfaces Used in Contact Mechanics

被引:0
|
作者
Schouwenaars, Rafael [1 ]
Angel Ramirez, Miguel [1 ]
Gabriel Figueroa, Carlos [2 ]
Hugo Jacobo, Victor [1 ]
Ortiz Prado, Armando [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Mat & Manufactura, Edificio O,Ave Univ 3000, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, PIIT, Fac Ingn, Dept Mat & Manufactura, Via Innovac 410, Apodaca, Nuevo Leon, Mexico
关键词
Random surface; Roughness; Fractal dimension; Monte Carlo simulation; Contact mechanics; ELASTIC-PLASTIC CONTACT; MODEL;
D O I
10.1007/978-3-030-21894-2_32
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The study and numerical simulation of randomly rough surfaces is a fundamental topic in contact mechanics. Existing theory permits calculating the distributions of values such as height, slopes and gradients based on the power spectrum of the surface. Determination of derived quantities like summit height or radius distribution tends to become mathematically intractable. An alternative approximation is then to simulate the random surfaces to obtain these distributions empirically. Here, a direct Monte-Carlo approach is presented in which distributions of summit heights and curvatures are obtained directly from the theoretical formulae. Results are compared to distributions calculated from simulated surfaces, over a wide range simulation parameters. The latter approach induces significant statistical dispersion as compared to the former. The summit radius distribution is narrower for the simulated surfaces than predicted by theory.
引用
收藏
页码:162 / 168
页数:7
相关论文
共 50 条
  • [41] Experimental investigation of the contact mechanics of rough fractal surfaces
    Buzio, R
    Malyska, K
    Rymuza, Z
    Boragno, C
    Biscarini, F
    De Mongeot, FB
    Valbusa, U
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3 (01) : 27 - 31
  • [42] The Contact Mechanics for Indentation of Single Asperity and Rough Surfaces
    Sun, Zhaoning
    Li, Xiaohai
    [J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (07):
  • [43] Topology simulation and contact mechanics of bifractal rough surfaces*
    Borri, Claudia
    Paggi, Marco
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2016, 230 (11) : 1345 - 1358
  • [44] A multiscale method for frictionless contact mechanics of rough surfaces
    Waddad, Y.
    Magnier, V.
    Dufrenoy, P.
    De Saxce, G.
    [J]. TRIBOLOGY INTERNATIONAL, 2016, 96 : 109 - 121
  • [45] Contact mechanics of microscopically rough surfaces with graded elasticity
    Paggi, Marco
    Zavarise, Giorgio
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2011, 30 (05) : 696 - 704
  • [46] Contact mechanics of rough surfaces: a comparison between theories
    G. Carbone
    F. Bottiglione
    [J]. Meccanica, 2011, 46 : 557 - 565
  • [47] SHADOWING BY RANDOMLY ROUGH SURFACES
    MCCOY, JJ
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1989, 86 (04): : 1523 - 1529
  • [48] Tribospectroscopy of randomly rough surfaces
    Dudko, OK
    Popov, VL
    Putzar, G
    [J]. TRIBOLOGY INTERNATIONAL, 2006, 39 (05) : 456 - 460
  • [49] Normal Contact Model for Elastic and Plastic Mechanics of Rough Surfaces
    Wang, Dong
    Zhang, Zhousuo
    Jin, Fan
    Fan, Xuanhua
    [J]. ACTA MECHANICA SOLIDA SINICA, 2019, 32 (02) : 148 - 159
  • [50] A new efficient numerical method for contact mechanics of rough surfaces
    Putignano, C.
    Afferrante, L.
    Carbone, G.
    Demelio, G.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (02) : 338 - 343