Evaluation of algorithms to identify incident cancer cases by using French health administrative databases

被引:17
|
作者
Ajrouche, Aya [1 ,2 ,3 ]
Estellat, Candice [1 ,2 ,3 ]
De Rycke, Yann [1 ,2 ,3 ]
Tubach, Florence [1 ,2 ,3 ,4 ]
机构
[1] Hop La Pitie Salpetriere, APHP, Ctr Pharmacoepidemiol Cephepi, Dept Biostat Sante Publ & Informat Med,CIC 1421, Paris, France
[2] Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
[3] INSERM, UMR ECEVE 1123, Paris, France
[4] Sorbonne Univ, Univ Pierre & Marie Curie, Paris, France
关键词
cancer; incidence; health insurance data; algorithms; pharmacoepidemiology; MEDICARE CLAIMS DATA; BREAST-CANCER; PREDICTIVE-VALUE; SOLID TUMORS; SYSTEM PMSI; IDENTIFICATION; SURVEILLANCE; PROSTATE; REGISTRY; CARE;
D O I
10.1002/pds.4225
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose Administrative databases are increasingly being used in cancer observational studies. Identifying incident cancer in these databases is crucial. This study aimed to develop algorithms to estimate cancer incidence by using health administrative databases and to examine the accuracy of the algorithms in terms of national cancer incidence rates estimated from registries. Methods We identified a cohort of 463 033 participants on 1 January 2012 in the Echantillon Generaliste des Beneficiaires (EGB; a representative sample of the French healthcare insurance system). The EGB contains data on long-term chronic disease (LTD) status, reimbursed outpatient treatments and procedures, and hospitalizations (including discharge diagnoses, and costly medical procedures and drugs). After excluding cases of prevalent cancer, we applied 15 algorithms to estimate the cancer incidence rates separately for men and women in 2012 and compared them to the national cancer incidence rates estimated from French registries by indirect age and sex standardization. Results The most accurate algorithm for men combined information from LTD status, outpatient anticancer drugs, radiotherapy sessions and primary or related discharge diagnosis of cancer, although it underestimated the cancer incidence (standardized incidence ratio (SIR) 0.85 [0.80-0.90]). For women, the best algorithm used the same definition of the algorithm for men but restricted hospital discharge to only primary or related diagnosis with an additional inpatient procedure or drug reimbursement related to cancer and gave comparable estimates to those from registries (SIR 1.00 [0.94-1.06]). Conclusion The algorithms proposed could be used for cancer incidence monitoring and for future etiological cancer studies involving French healthcare databases. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:935 / 944
页数:10
相关论文
共 50 条
  • [21] Validation of an Updated Algorithm to Identify Patients With Incident Non-Small Cell Lung Cancer in Administrative Claims Databases
    Patel, Sandip Pravin
    Wang, Rongrong
    Zhou, Summera Qiheng
    Sheinson, Daniel
    Johnson, Ann
    Lee, Janet Shin
    JCO CLINICAL CANCER INFORMATICS, 2024, 8
  • [22] ALGORITHMS TO IDENTIFY SECOND BREAST CANCER EVENTS USING ADMINISTRATIVE DATA.
    Chubak, J.
    Yu, O.
    Pocobelli, G.
    Lamerato, L.
    Webster, J.
    Prout, M. N.
    Yood, M. Ulcickas
    Barlow, W. E.
    Buist, D. S. M.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 : S42 - S42
  • [23] Evaluation of Algorithms Using Automated Health Plan Data to Identify Breast Cancer Recurrences
    Aiello Bowles, Erin J.
    Kroenke, Candyce H.
    Chubak, Jessica
    Bhimani, Jenna
    O'Connell, Kelli
    Brandzel, Susan
    Valice, Emily
    Doud, Rachael
    Theis, Mary Kay
    Roh, Janise M.
    Heon, Narre
    Persaud, Sonia
    Griggs, Jennifer J.
    Bandera, Elisa V.
    Kushi, Lawrence H.
    Kantor, Elizabeth D.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2024, 33 (03) : 355 - 364
  • [24] Using health administrative databases to identify mechanical ventilation in transported pediatric critically ill patients
    Tijssen, J. A.
    Richard, L.
    Shariff, S. Z.
    To, T.
    Parshuram, C.
    CANADIAN JOURNAL OF RESPIRATORY CRITICAL CARE AND SLEEP MEDICINE, 2021, 5 (06) : 380 - 385
  • [25] The use of administrative health care databases to identify patients with rheumatoid arthritis
    Hanly, John G.
    Thompson, Kara
    Skedgel, Chris
    OPEN ACCESS RHEUMATOLOGY-RESEARCH AND REVIEWS, 2015, 7 : 69 - 75
  • [26] Using administrative health data to identify individuals with intellectual and developmental disabilities: a comparison of algorithms
    Lin, E.
    Balogh, R.
    Cobigo, V.
    Ouellette-Kuntz, H.
    Wilton, A. S.
    Lunsky, Y.
    JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, 2013, 57 (05) : 462 - 477
  • [27] The validity of diagnostic algorithms to identify asthma patients in healthcare administrative databases: A systematic review
    Yousif, Alia
    Dault, Roxanne
    Courteau, Mireille
    Blais, Lucie
    Cloutier, Anne-Marie
    Lacasse, Anais
    Vanasse, Alain
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 404 - 404
  • [28] Validation test for algorithms to identify rheumatoid arthritis patients in the Tuscan healthcare administrative databases
    Convertino, Irma
    Cazzato, Massimiliano
    Giometto, Sabrina
    Gini, Rosa
    Lucenteforte, Ersilia
    Valdiserra, Giulia
    Cappello, Emiliano
    Ferraro, Sara
    Tillati, Silvia
    Fornili, Marco
    Bartolini, Claudia
    Paoletti, Olga
    Lorenzoni, Valentina
    Trieste, Leopoldo
    Filippi, Matteo
    Turchetti, Giuseppe
    Cristofano, Michele
    Blandizzi, Corrado
    Mosca, Marta
    Tuccori, Marco
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2021, 30 : 394 - 395
  • [29] Algorithm to Identify Incident Epithelial Ovarian Cancer Cases Using Claims Data
    Huepenbecker, Sarah P.
    Zhao, Hui
    Sun, Charlotte C.
    Fu, Shuangshuang
    He, Weiguo
    Giordano, Sharon H.
    Meyer, Larissa A.
    JCO CLINICAL CANCER INFORMATICS, 2022, 6
  • [30] GENERATING COSTING ALGORITHMS FOR ONCOLOGY DRUGS USING ADMINISTRATIVE DATABASES
    Mittmann, N.
    Seung, S. J.
    Cheng, S. Y.
    Liu, N.
    Camacho, X.
    Maclagan, L.
    DeAngelis, C.
    Earle, C.
    VALUE IN HEALTH, 2015, 18 (07) : A691 - A691