Several Gruss' type inequalities for the complex integral

被引:0
|
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, POB 14428, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, DST NRF Ctr Excellence Math & Stat Sci, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
JOURNAL OF ANALYSIS | 2021年 / 29卷 / 01期
关键词
Complex integral; Continuous functions; Holomorphic functions; Gruss inequality; 26D15; 26D10; 30A10; 30A86; TRAPEZOID-TYPE INEQUALITIES; UNITARY OPERATORS; CIRCLE;
D O I
10.1007/s41478-020-00268-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that f and g are continuous on gamma, gamma subset of C is a piecewise smooth path parametrized by zIn this paper we establish some bounds for the magnitude of the functional D gamma and a related version of this under various assumptions for the functions f and g and provide some examples for circular paths.
引用
收藏
页码:337 / 351
页数:15
相关论文
共 50 条
  • [21] Gruss type integral inequalities for a new class of k-fractional integrals
    Habib, Sidra
    Farid, Ghulam
    Mubeen, Shahid
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 541 - 554
  • [22] Generalizations of Ostrowski-Gruss type integral inequalities for twice differentiable mappings
    Park, Jaekeun
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 39 (09): : 10 - 23
  • [23] Some Gruss-type inequalities using generalized Katugampola fractional integral
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    AIMS MATHEMATICS, 2020, 5 (02): : 1011 - 1024
  • [24] Generalizations of some q-integral inequalities of Holder, Ostrowski and Gruss type
    Shi, Da
    Farid, Ghulam
    Elamin, Abd Elmotaleb A. M. A.
    Akram, Wajida
    Alahmari, Abdullah A.
    Younis, B. A.
    AIMS MATHEMATICS, 2023, 8 (10): : 23459 - 23471
  • [25] Some inequalities of the Gruss type for conformable k-fractional integral operators
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Ghaffar, Abdul
    Qi, Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [26] Improvement of Gruss and Ostrowski Type Inequalities
    Acu, Ana Maria
    FILOMAT, 2015, 29 (09) : 2027 - 2035
  • [27] On Gruss type inequalities for double integrals
    Pachpatte, BG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) : 454 - 459
  • [28] NEW GRUSS TYPE INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL WITH MONOTONIC INTEGRATORS AND APPLICATIONS
    Alomari, Mohammad W.
    Dragomir, Sever S.
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01): : 77 - 93
  • [29] FRACTIONAL INTEGRAL INEQUALITIES OF GRUSS TYPE VIA GENERALIZED MITTAG-LEFFLER FUNCTION
    Farid, G.
    Rehman, A. U.
    Mishra, Vishnu Narayan
    Mehmood, S.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (04): : 548 - 558
  • [30] WEIGHTED OSTROWSKI AND GRUSS TYPE INEQUALITIES
    Pecaric, Josip
    Penava, Mihaela Ribicic
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2020, 11 (01): : 12 - 23