ScagExplorer: Exploring Scatterplots by Their Scagnostics

被引:58
|
作者
Tuan Nhon Dang [1 ]
Wilkinson, Leland [2 ]
机构
[1] Univ Illinois, Chicago, IL 60680 USA
[2] Univ Illinois, Skytree Software Inc, Chicago, IL 60680 USA
关键词
I.5.2 [Pattern recognition]: Design MethodologyPattern analysis; VIEWS;
D O I
10.1109/PacificVis.2014.42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A scatterplot displays a relation between a pair of variables. Given a set of nu variables, there are nu(nu-1)/2 pairs of variables, and thus the same number of possible pairwise scatterplots. Therefore for even small sets of variables, the number of scatterplots can be large. Scatterplot matrices (SPLOMs) can easily run out of pixels when presenting high-dimensional data. We introduce a theoretical method and a testbed for assessing whether our method can be used to guide interactive exploration of high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional Euclidean space. Working directly with these characterizations, we can locate anomalies for further analysis or search for similar distributions in a "large" SPLOM with more than a hundred dimensions. Our testbed, ScagExplorer, is developed in order to evaluate the feasibility of handling huge collections of scatterplots.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [41] Evaluation on interactive visualization data with scatterplots
    Nguyen, Quang Vinh
    Miller, Natalie
    Arness, David
    Huang, Weidong
    Huang, Mao Lin
    Simoff, Simeon
    Visual Informatics, 2020, 4 (04) : 1 - 10
  • [42] Binned scatterplots with marginal histograms: binscatterhist
    Pinna, Matteo
    STATA JOURNAL, 2022, 22 (02): : 430 - 445
  • [43] Parallel scatterplots: Visual analysis with GPU
    State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou 310058, China
    不详
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 2008, 9 (1219-1228):
  • [44] Perception of Average Value in Multiclass Scatterplots
    Gleicher, Michael
    Correll, Michael
    Nothelfer, Christine
    Franconeri, Steven
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2316 - 2325
  • [45] HEURISTIC METHOD FOR LABEL PLACEMENT IN SCATTERPLOTS
    NOMA, E
    PSYCHOMETRIKA, 1987, 52 (03) : 463 - 468
  • [46] Disentangled Representation of Data Distributions in Scatterplots
    Jo, Jaemin
    Seo, Jinwook
    2019 IEEE VISUALIZATION CONFERENCE (VIS), 2019, : 136 - 140
  • [47] RENOVATED SCATTERPLOTS FOR CENSORED-DATA
    SMITH, PJ
    ZHANG, J
    BIOMETRIKA, 1995, 82 (02) : 447 - 452
  • [48] Electrotactile perception of scatterplots on the fingertips and abdomen
    S. J. Haase
    K. A. Kaczmarek
    Medical and Biological Engineering and Computing, 2005, 43 : 283 - 289
  • [49] Illuminated 3D Scatterplots
    Sanftmann, Harald
    Weiskopf, Daniel
    COMPUTER GRAPHICS FORUM, 2009, 28 (03) : 751 - 758
  • [50] An exploded view paradigm to disambiguate scatterplots
    Mahmood, Salman
    Mueller, Klaus
    COMPUTERS & GRAPHICS-UK, 2018, 73 : 37 - 46