Large-scale public data reuse to model immunotherapy response and resistance

被引:587
|
作者
Fu, Jingxin [1 ,2 ,3 ]
Li, Karen [4 ]
Zhang, Wubing [1 ,2 ]
Wan, Changxin [1 ,2 ]
Zhang, Jing [3 ]
Jiang, Peng [2 ,5 ]
Liu, X. Shirley [2 ]
机构
[1] Tongji Univ, Sch Life Sci & Technol, Shanghai Pulm Hosp, Clin Translat Res Ctr, Shanghai 200433, Peoples R China
[2] Harvard TH Chan Sch Publ Hlth, Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02215 USA
[3] Tongji Univ, Tongji Hosp, Sch Life Sci & Technol, Shanghai 200065, Peoples R China
[4] Winsor Sch, Boston, MA 02215 USA
[5] NCI, Canc Data Sci Lab, NIH, Bethesda, MD 20892 USA
关键词
Immunotherapy; Immune evasion; Data integration; Web platform; CANCER; CELLS; GENES;
D O I
10.1186/s13073-020-0721-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Despite growing numbers of immune checkpoint blockade (ICB) trials with available omics data, it remains challenging to evaluate the robustness of ICB response and immune evasion mechanisms comprehensively. To address these challenges, we integrated large-scale omics data and biomarkers on published ICB trials, non-immunotherapy tumor profiles, and CRISPR screens on a web platform TIDE (). We processed the omics data for over 33K samples in 188 tumor cohorts from public databases, 998 tumors from 12 ICB clinical studies, and eight CRISPR screens that identified gene modulators of the anticancer immune response. Integrating these data on the TIDE web platform with three interactive analysis modules, we demonstrate the utility of public data reuse in hypothesis generation, biomarker optimization, and patient stratification.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Experience assessing an architectural approach to large-scale systematic reuse
    Sullivan, KJ
    Knight, JC
    [J]. PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 1996, : 220 - 229
  • [32] On a large-scale model of the Universe
    Grigoryan, SS
    [J]. DOKLADY PHYSICS, 2002, 47 (10) : 731 - 734
  • [33] On large-scale model of universe
    Grigorian, S.S.
    [J]. Doklady Akademii Nauk, 2002, 386 (04) : 471 - 475
  • [34] Control Strategy for Urban Public Transit in Response to Large-scale Emergent Epidemic
    Ru, Xiao-Lei
    Yang, Chao
    Yan, Gang
    Ma, Xiao-Lei
    [J]. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2020, 33 (11): : 11 - 19
  • [35] On a large-scale model of the universe
    S. S. Grigoryan
    [J]. Doklady Physics, 2002, 47 : 731 - 734
  • [36] Dialogue Response Ranking Training with Large-Scale Human Feedback Data
    Gao, Xiang
    Zhang, Yizhe
    Galley, Michel
    Brockett, Chris
    Dolan, Bill
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 386 - 395
  • [37] Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data
    Fernando Arizmendi
    Marcelo Barreiro
    Cristina Masoller
    [J]. Scientific Reports, 7
  • [38] Regional response to large-scale emergency events: Building on historical data
    Romanowski, Carol
    Raj, Rajendra
    Schneider, Jennifer
    Mishra, Sumita
    Shivshankar, Vinay
    Ayengar, Srikant
    Cueva, Fernando
    [J]. INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2015, 11 : 12 - 21
  • [39] Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data
    Arizmendi, Fernando
    Barreiro, Marcelo
    Masoller, Cristina
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [40] Public Transit Passenger Profiling by Using Large-Scale Smart Card Data
    Wang, Lewen
    Wang, Yu
    Sun, Xiaofei
    Wu, Yizheng
    Peng, Fei
    Chen, Chun-Hung Peter
    Song, Guohua
    [J]. JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (04)