Cohomological invariants of hyperelliptic curves of even genus

被引:4
|
作者
Pirisi, Roberto [1 ,2 ]
机构
[1] Univ Ottawa, 585 King Edward Ave, Ottawa, ON K1N 6N5, Canada
[2] Univ British Columbia, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
来源
ALGEBRAIC GEOMETRY | 2017年 / 4卷 / 04期
关键词
cohomological invariant; algebraic stack; hyperelliptic curve; CHOW RING; STACK;
D O I
10.14231/AG-2017-022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be an even positive integer, and let p be a prime number. We compute the cohomological invariants with coefficients in Z/pZ of the stacks of hyperelliptic curves H-g over an algebraically closed field k(0).
引用
收藏
页码:424 / 443
页数:20
相关论文
共 50 条
  • [41] Constructing hyperelliptic curves of genus 2 suitable for cryptography
    Weng, A
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 435 - 458
  • [42] 7-Gons and genus three hyperelliptic curves
    Hoffman, J. William
    Wang, Haohao
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (01) : 35 - 52
  • [43] Non-hyperelliptic modular curves of genus 3
    Gonzalez-Jimenez, Enrique
    Oyono, Roger
    JOURNAL OF NUMBER THEORY, 2010, 130 (04) : 862 - 878
  • [44] Twists of non-hyperelliptic curves of genus 3
    Garcia, Elisa Lorenzo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) : 1785 - 1812
  • [45] Generating hyperelliptic curves of genus 2 suitable for cryptography
    Kanayama, N
    Nagao, K
    Uchiyama, S
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCI I, 2002, : 151 - 156
  • [46] Index calculus attack for hyperelliptic curves of small genus
    Thériault, N
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2003, 2003, 2894 : 75 - 92
  • [47] The Chow Ring of the Stack of Hyperelliptic Curves of Odd Genus
    Di Lorenzo, Andrea
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (04) : 2642 - 2681
  • [48] Some Elliptic Subcovers of Genus 3 Hyperelliptic Curves
    Tian, Song
    Yu, Wei
    Li, Bao
    Wang, Kunpeng
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2015, 2015, 9065 : 181 - 191
  • [49] Point counting on genus 3 non hyperelliptic curves
    Ritzenthaler, C
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2004, 3076 : 379 - 394
  • [50] Hyperelliptic curves of genus 3 with prescribed automorphism group
    Gutierrez, J
    Sevilla, D
    Shaska, T
    COMPUTATIONAL ASPECTS OF ALGEBRAIC CURVES, 2005, 13 : 109 - 123