Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters

被引:23
|
作者
Arefi, Mohsen [1 ]
机构
[1] Univ Birjand, Fac Math Sci & Stat, Dept Stat, Birjand, Iran
关键词
Fuzzy number; Goodness of fit; Loss function; Fuzzy parameter; Quantile fuzzy regression; GOAL PROGRAMMING APPROACH; LEAST-SQUARES ESTIMATION; LINEAR-REGRESSION; MODEL;
D O I
10.1007/s00500-019-04424-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new approach is investigated to the problem of quantile regression modeling based on the fuzzy response variable and the fuzzy parameters. In this approach, we first introduce a loss function between fuzzy numbers which it can present some quantiles of fuzzy data. Then, we fit a quantile regression model between the available data based on proposed loss function. To evaluate the goodness of fit of the optimal quantile fuzzy regression models, we introduce two indices. Inside, we study the application of the proposed approach in modeling some soil characteristics, based on a real data set.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 50 条
  • [31] A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs
    E. Hosseinzadeh
    H. Hassanpour
    M. Arefi
    Soft Computing, 2015, 19 : 1143 - 1151
  • [32] Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output
    Nimet Yapıcı Pehlivan
    Ayşen Apaydın
    Complex & Intelligent Systems, 2016, 2 (1) : 61 - 73
  • [33] Robust fuzzy clustering based on quantile autocovariances
    Lafuente-Rego, B.
    D'Urso, P.
    Vilar, J. A.
    STATISTICAL PAPERS, 2020, 61 (06) : 2393 - 2448
  • [34] Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output
    Pehlivan, Nimet Yapici
    Apaydin, Aysen
    COMPLEX & INTELLIGENT SYSTEMS, 2016, 2 (01) : 61 - 73
  • [35] Fuzzy regression
    Guo, Renkuan
    Guo, Danni
    PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2008, 7 : 408 - 414
  • [36] Estimating the parameters of a fuzzy linear regression model
    Arabpour, A. R.
    Tata, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2008, 5 (02): : 1 - 19
  • [37] A PITCH DETECTOR WITH FUZZY OUTPUTS
    LIANG, MG
    YUAN, BZ
    14TH INTERNATIONAL CONGRESS ON ACOUSTICS, PROCEEDINGS, VOLS 1-4, 1992, : 1119 - 1120
  • [38] Hypotheses testing for fuzzy robust regression parameters
    Kula, Kamile Sanli
    Apaydin, Aysen
    CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2129 - 2134
  • [39] Recognition of a Linear Automaton Outputs by the Fuzzy Outputs
    Speranskiy, D., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (01): : 109 - 116
  • [40] A strong consistent least-squares estimator in a linear fuzzy regression model with fuzzy parameters and fuzzy dependent variables
    Stahl, Christoph
    FUZZY SETS AND SYSTEMS, 2006, 157 (19) : 2593 - 2607