THE DIFFUSION COEFFICIENT FOR PIECEWISE EXPANDING MAPS OF THE INTERVAL WITH METASTABLE STATES

被引:12
|
作者
Dolgopyat, Dmitry [1 ]
Wright, Paul [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Expanding maps; absolutely continuous invariant measure; transfer operator; metastable states; slow dynamics; INVARIANT-MEASURES;
D O I
10.1142/S0219493712003547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a piecewise smooth expanding map of the interval possessing several invariant subintervals and the same number of ergodic absolutely continuous invariant probability measures (ACIMs). After this system is perturbed to make the subintervals lose their invariance in such a way that there is a unique ACIM, we show how to approximate the diffusion coefficient for an observable of bounded variation by the diffusion coefficient of a related continuous time Markov chain.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Expanding cocycles for interval maps
    Dobbs, Neil
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (01) : 39 - 44
  • [22] Stochastic stability for piecewise expanding maps in Rd
    Cowieson, WJ
    NONLINEARITY, 2000, 13 (05) : 1745 - 1760
  • [23] SMOOTH DEFORMATIONS OF PIECEWISE EXPANDING UNIMODAL MAPS
    Baladi, Viviane
    Smania, Daniel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) : 685 - 703
  • [24] ON THE FRACTIONAL SUSCEPTIBILITY FUNCTION OF PIECEWISE EXPANDING MAPS
    Aspenberg, Magnus
    Baladi, Viviane
    Leppanen, Juho
    Persson, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (02) : 679 - 706
  • [25] STATISTICAL STABILITY FOR MULTIDIMENSIONAL PIECEWISE EXPANDING MAPS
    Alves, Jose F.
    Pumarino, Antonio
    Vigil, Enrique
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (07) : 3057 - 3068
  • [26] SMOOTH LIVSIC REGULARITY FOR PIECEWISE EXPANDING MAPS
    Nicol, Matthew
    Persson, Tomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) : 905 - 914
  • [27] Complexity of injective piecewise contracting interval maps
    Catsigeras, E.
    Guiraud, P.
    Meyroneinc, A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (01) : 64 - 88
  • [28] Dynamics of piecewise linear interval maps with hysteresis
    Berkolaiko, G
    DYNAMICS AND STABILITY OF SYSTEMS, 1999, 14 (01): : 57 - 70
  • [29] Local dimension for piecewise monotonic maps on the interval
    Hofbauer, F
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 1119 - 1142
  • [30] Joint ergodicity of piecewise monotone interval maps
    Bergelson, Vitaly
    Son, Younghwan
    NONLINEARITY, 2023, 36 (06) : 3376 - 3418