Does richness of emergent plants affect CO2 and CH4 emissions in experimental wetlands?

被引:22
|
作者
Mo, Yi [1 ]
Deng, Zhao-Heng [1 ]
Gao, Jun-Qin [1 ]
Guo, Yu-Xi [1 ]
Yu, Fei-Hai [1 ]
机构
[1] Beijing Forestry Univ, Sch Nat Conservat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
aquatic plant communities; diversity effect; experimental communities; greenhouse gas emissions; species richness; NITROUS-OXIDE EMISSIONS; METHANE EMISSIONS; SPECIES RICHNESS; CARBON-DIOXIDE; VASCULAR PLANTS; DIVERSITY; PRODUCTIVITY; BIOMASS; SOIL; BIODIVERSITY;
D O I
10.1111/fwb.12586
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Plant species richness may affect greenhouse gas emissions because it may change ecosystem productivity. Emergent plants are an important component of wetland ecosystems, but little is known about how emergent plant richness affects greenhouse gas emissions. We assembled experimental communities consisting of 1, 2, 4 or 8 emergent plant species in aquatic microcosms and measured community biomass and emissions of CO2 and CH4. Emergent plant richness had little effect on cumulative emissions of CO2 or CH4, most likely because it did not affect community biomass. This conclusion is supported by the fact that CO2 emission was significantly positively related to community biomass. The reason for the unresponsiveness of community biomass to species richness of emergent plants may be that all the plants are in the same functional group so that complementarity among species is weak. CH4 emissions from monocultures of different species differed greatly. Our results do not support the hypothesis that richness of emergent plants plays an important role in regulating greenhouse gas emissions from wetlands. A significant richness effect on greenhouse gas emissions might be detected in wetlands consisting of different plant functional groups such as emergent, floating and submerged plants.
引用
收藏
页码:1537 / 1544
页数:8
相关论文
共 50 条
  • [31] Review of experimental sorption studies of CO2 and CH4 in shales
    Klewiah, Isaac
    Berawala, Dhruvit S.
    Walker, Hans Christian Alexander
    Andersen, Pal O.
    Nadeau, Paul H.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 73
  • [32] Measurement and Calculation of CO2 Frost Points in CH4 + CO2/CH4 + CO2 + N2/CH4 + CO2 + C2H6 Mixtures at Low Temperatures
    Xiong, Xiaojun
    Lin, Wensheng
    Jia, Rong
    Song, Yang
    Gu, Anzhong
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (11): : 3077 - 3086
  • [33] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    Solms, Nicolas von
    Chemical Engineering Journal, 2022, 427
  • [34] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    von Solms, Nicolas
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [35] Warming promotes soil CO2 and CH4 emissions but decreasing moisture inhibits CH4 emissions in the permafrost peatland of the Great Xing'an Mountains
    Lu, Boquan
    Song, Liquan
    Zang, Shuying
    Wang, Hanxi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 829
  • [36] May sediments affect the inhibiting properties of NaCl on CH4 and CO2 hydrates formation? an experimental report
    Giovannetti, Rita
    Gambelli, Alberto Maria
    Castellani, Beatrice
    Rossi, Andrea
    Minicucci, Marco
    Zannotti, Marco
    Li, Yan
    Rossi, Federico
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
  • [37] CO2/CH4 Separation by Adsorption
    不详
    ENERGY TECHNOLOGY, 2013, 1 (08) : 434 - 434
  • [38] A photocatalyst for reducing CO2 to CH4
    Chemical Engineering (United States), 2018, 125 (01):
  • [39] CO2/CH4 feed for DME
    不详
    EUROPEAN CHEMICAL NEWS, 1996, 65 (1718): : 22 - 22
  • [40] PHOTOCATALYZED CONVERSION OF CO2 TO CH4
    XU, SP
    GAFNEY, HD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 24 - INOR