We present an accurate calculation of the energies of the bound states of the quantumdipole problemin two dimensions using a Rayleigh-Ritz approach. We obtain an upper bound for the energy of the ground state, which is by far the most precise in the literature for this problem. We also obtain an alternative estimate of the fundamental energy of the model performing an extrapolation of the results corresponding to different subspaces. Finally, our calculation of the energies of the first 500 states shows a perfect agreement with the expected asymptotic behavior.
机构:
Capital Normal Univ, Dept Math, Beijing, Peoples R China
Univ Bonn, Inst Appl Math, D-53115 Bonn, GermanyCapital Normal Univ, Dept Math, Beijing, Peoples R China
Fei, Shao-Ming
Gao, Xiu-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing, Peoples R China
Gao, Xiu-Hong
Wang, Xiao-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing, Peoples R China
Wang, Xiao-Hong
Wang, Zhi-Xi
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing, Peoples R China
Wang, Zhi-Xi
Wu, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing, Peoples R China
机构:
Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan
Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeonbuk, South Korea
Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA
Western Michigan Univ, Nanotechnol Res & Computat Ctr, Kalamazoo, MI 49008 USAUniv Tokyo, Inst Solid State Phys, Chiba 2778581, Japan
Chung, S. G.
Ueda, K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Inst Solid State Phys, Chiba 2778581, JapanUniv Tokyo, Inst Solid State Phys, Chiba 2778581, Japan