Automatic target retrieval in a video-surveillance task

被引:0
|
作者
Moroni, Davide [1 ]
Pieri, Gabriele [1 ]
机构
[1] Italian Natl Res Council CNR, Inst Informat Sci & Technol, Via Moruzzi 1, I-56124 Pisa, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we face the automatic target search problem. While performing an object tracking task, we address the problem of identifying a previously selected target when it is lost due to masking, occlusions, or quick and unexpected movements. Firstly a candidate target is identified in the scene through motion detection techniques, subsequently using a semantic categorization and content based image retrieval techniques, the candidate target is identified whether it is the correct one (i.e. the previous lost target), or not. Content Based Image Retrieval serves as support to the search problem and is performed using a reference data base which was populated a priori.
引用
收藏
页码:113 / +
页数:3
相关论文
共 50 条
  • [31] CITIES, VIDEOCAMERAS AND VIDEO-SURVEILLANCE: STATE OF THE ART AND RESEARCH PERSPECTIVES
    Lio, Vanesa
    ASTROLABIO-NUEVA EPOCA, 2015, (15): : 273 - 302
  • [32] MULTI-FEATURE STATIONARY FOREGROUND DETECTION FOR CROWDED VIDEO-SURVEILLANCE
    Ortego, Diego
    SanMiguel, Juan C.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2403 - 2407
  • [33] Long-Term Face Tracking for Crowded Video-Surveillance Scenarios
    Barquero, German
    Fernandez, Cartes
    Hupont, Isabelle
    IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2020), 2020,
  • [34] Temporal reasoning for scenario recognition in video-surveillance using Bayesian networks
    Ziani, A.
    Motamed, C.
    Noyer, J. -C.
    IET COMPUTER VISION, 2008, 2 (02) : 99 - 107
  • [35] View-invariant human feature extraction for video-surveillance applications
    Rogez, Gregory
    Guerrero, J. J.
    Orrite, Carlos
    2007 IEEE CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2007, : 324 - +
  • [36] Offline quality monitoring for legal evidence images in video-surveillance applications
    Maalouf, Aldo
    Larabi, Mohamed-Chaker
    Nicholson, Didier
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 73 (01) : 189 - 218
  • [37] Abnormality Retrieval Method of Laboratory Surveillance Video Based on Deep Automatic Encoder
    Zhang, Dawei
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2023, 15 (01)
  • [38] Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild
    Sarker, Mohammad Ibrahim
    Losada-Gutierrez, Cristina
    Marron-Romera, Marta
    Fuentes-Jimenez, David
    Luengo-Sanchez, Sara
    SENSORS, 2021, 21 (12)
  • [39] 'The gaze without eyes': video-surveillance and the changing nature of urban space
    Koskela, H
    PROGRESS IN HUMAN GEOGRAPHY, 2000, 24 (02) : 243 - 265
  • [40] VIDEO-SURVEILLANCE AND COMPUTER MONITORING IN THE WORKPLACE. A REVIEW OF THE CASE LAW
    Desdentado Bonete, Aurelio
    Munoz Ruiz, Ana Belen
    REVISTA GENERAL DEL DERECHO DEL TRABAJO Y DE LA SEGURIDAD SOCIAL, 2014, (39): : 1 - 24