Minimum variance control structure for adaptive optics systems

被引:4
|
作者
Looze, DP [1 ]
机构
[1] Univ Massachusetts, Dept ECU, Amherst, MA 01003 USA
关键词
D O I
10.1109/ACC.2005.1470172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows that the minimum variance adaptive optics controller under nearly ideal conditions is the integral controller used in adaptive optics systems. The inputs to the controller dynamics are obtained from a MAP reconstructor that uses the estimation error covariance of the wavefront error. The conditions assumed to obtain this controller are: isotropic first-order (but non-stationary) temporal atmospheric aberrations; no loop delay; and no deformable mirror dynamics.
引用
收藏
页码:1466 / 1471
页数:6
相关论文
共 50 条
  • [41] An adaptive neural regulator of minimum variance
    Ratkovic, N
    Stankovic, S
    NEUREL 2000: PROCEEDINGS OF THE 5TH SEMINAR ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, 2000, : 171 - 176
  • [42] A ROBUST ADAPTIVE MINIMUM VARIANCE CONTROLLER
    PRALY, L
    LIN, SF
    KUMAR, PR
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (02) : 235 - 266
  • [43] Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling
    Raynaud, H. -F.
    Correia, C.
    Kulcsar, C.
    Conan, J. -M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (07) : 768 - 789
  • [45] DESIGN OF A GENERALIZED MINIMUM VARIANCE CONTROL IN SAMPLED-DATA CONTROL SYSTEMS
    Sato, Takao
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (10B): : 3295 - 3302
  • [46] On a stability of minimum variance control
    Mori, Yasuchika
    Asami, Futoshi
    ELECTRICAL ENGINEERING IN JAPAN, 2007, 159 (01) : 17 - 25
  • [47] Deep learning control model for adaptive optics systems
    Xu, Zhenxing
    Yang, Ping
    Hu, Ke
    Xu, Bing
    Li, Heping
    APPLIED OPTICS, 2019, 58 (08) : 1998 - 2009
  • [48] Robust Control of a Deformable Mirror for Adaptive Optics Systems
    Song, Dingan
    Li, Xinyang
    Peng, Zhenming
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ARTIFICIAL INTELLIGENCE (CAAI 2017), 2017, 134 : 42 - 52
  • [49] Application of Adaptive Minimum-variance Control Technique for Cyclic Production Machine
    Mizuno, Naoki
    Kim, Daeyong
    Sugiyama, Hiroshi
    Fukatsu, Rvota
    IFAC PAPERSONLINE, 2016, 49 (13): : 146 - 151
  • [50] Minimum Variance Controller Based Adaptive Control for Doubly Fed Induction Generator
    Bhattarai, Rojan
    Gurung, Niroj
    Kamalasadan, Sukumar
    2016 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2016,