Silicon doped carbon nanotubes as high energy anode for lithium-ion batteries

被引:22
|
作者
Gonzalez, Isaias Zeferino [1 ]
Chiu, Hsien-Chieh [2 ]
Gauvin, Raynald [2 ]
Demopoulos, George P. [2 ]
Verde-Gomez, Ysmael [1 ]
机构
[1] Tecnol Nacl Mexico, IT Cancan, Av Kabah Km 3, Cancun 77500, Mexico
[2] McGill Univ, Dept Min & Mat Engn, 3610 Univ St, Montreal, PQ H3A 0C5, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Silicon doped carbon nanotubes; Chemical vapor deposition; High-energy anode; Lithium-ion batteries; PERFORMANCE; SI; GRAPHENE; NITRIDE; STORAGE; NANOCOMPOSITE; NANOPARTICLES; ELECTRODE; CAPACITY;
D O I
10.1016/j.mtcomm.2022.103158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon-doped carbon nanotubes (Si-CNT) have been produced and modified n situ through substitutional silicon doping in the carbon network in one step by a modified chemical vapor deposition (M-CVD) process. Toluene, ferrocene, and triphenylsilane were used as carbon sources, the metal catalyst for the nanotubes' growth, and Si doping agent, respectively. The doping effect of Si-CNT and its application as an anode material for lithium-ion batteries was investigated using scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Silicon content in Si-CNT was estimated between 0.29 and 0.76 at% by X-ray photoelectron spectroscopy. The electrochemical evaluation revealed that the Si-CNT electrode achieved an initial high discharge capacity of 1060 mAh g(-1) and a reversible capacity of 400 mAh g(-1) at 186 mA g(-1), maintaining good cyclic stability over 120 cycles. The increase of capacity is the result of doping silicon, whose significant localized but distributed volume change induced defects in CNT structure resulting in enhanced Li-ion intercalation kinetics further accommodated by the flexible and mechanically robust carbon nanotubes. Therefore, Si dopedCNT could be considered as potential anode material for rechargeable lithium-ion batteries (LIB) with high capacity.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Flexible Porous Silicon/Carbon Fiber Anode for High-Performance Lithium-Ion Batteries
    Liu, Gang
    Zhu, Xiaoyi
    Li, Xiaohua
    Jia, Dongchen
    Li, Dong
    Ma, Zhaoli
    Li, Jianjiang
    MATERIALS, 2022, 15 (09)
  • [32] Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries
    Abbas, Syed Mustansar
    Hussain, Syed Tajammul
    Ali, Saqib
    Ahmad, Nisar
    Ali, Nisar
    Abbas, Saghir
    Ali, Zulfiqar
    JOURNAL OF SOLID STATE CHEMISTRY, 2013, 202 : 43 - 50
  • [33] Carbon-silicon anode composites for lithium-ion (polymer) rechargeable batteries
    Onishchenko, D. V.
    Popovich, A. A.
    Boiko, Yu. N.
    RUSSIAN JOURNAL OF NON-FERROUS METALS, 2010, 51 (02) : 169 - 172
  • [34] Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries
    Huixin Chen
    Zhixin Dong
    Yanpeng Fu
    Yong Yang
    Journal of Solid State Electrochemistry, 2010, 14 : 1829 - 1834
  • [35] Carbon-silicon anode composites for lithium-ion (polymer) rechargeable batteries
    D. V. Onishchenko
    A. A. Popovich
    Yu. N. Boiko
    Russian Journal of Non-Ferrous Metals, 2010, 51 : 169 - 172
  • [36] Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries
    Lee, Jong-Hyuk
    Kim, Wan-Jun
    Kim, Jae-Youn
    Lim, Sung-Hwan
    Lee, Sung-Man
    JOURNAL OF POWER SOURCES, 2008, 176 (01) : 353 - 358
  • [37] Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries
    Liu, Xuyan
    Zhu, Xinjie
    Pan, Deng
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):
  • [38] Laser cutting of silicon anode for lithium-ion batteries
    Berhe, Mulugeta Gebrekiros
    Oh, Hong Geun
    Park, Seung-Keun
    Lee, Dongkyoung
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 16 : 322 - 334
  • [39] Electrically Exploded Silicon/Carbon Nanocomposite as Anode Material for Lithium-ion Batteries
    Farooq, Umer
    Choi, Jeong-Hee
    Kim, Doohun
    Pervez, Syed Atif
    Yaqub, Adnan
    Hwang, Min-Ji
    Lee, You-Jin
    Lee, Won-Jae
    Choi, Hae-Young
    Lee, Sang-Hoon
    You, Ji-Hyun
    Ha, Chung-Wan
    Doh, Chil-Hoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (12) : 9340 - 9345
  • [40] Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries
    Lee, Byeongyong
    Liu, Tianyuan
    Kim, Sun Kyung
    Chang, Hankwon
    Eom, Kwangsup
    Xie, Lixin
    Chen, Shuo
    Jang, Hee Dong
    Lee, Seung Woo
    CARBON, 2017, 119 : 438 - 445