Self-similar stochastic processes in solar wind turbulence

被引:0
|
作者
Podesta, J. J. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20771 USA
关键词
solar wind; turbulence; self-similar scaling; stochastic processes;
D O I
10.1016/j.asr.2007.07.008
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Solar wind data is used to estimate the autocorrelation function for the stochastic process x(tau) = y(t + tau) - y(t), considered as a function of tau, where y(t) is any one of the quantities B-2(t), n(p)(t) V-2(t), or n(p()t). This process has stationary increments and a variance that increases like a power law tau(2y) where gamma is the scaling exponent. For the kinetic energy density and the proton density the scaling exponent is close to the Kolmogorov value gamma = 1/3, for the magnetic energy density it is slightly larger. In all three cases, it is shown that the autocorrelation function estimated from the data agrees with the theoretical autocorrelation function for a self-similar stochastic process with stationary increments and finite variance. This is far from proof, but it suggests that these stochastic processes may be self-similar for time scales in the small scale inertial range of the turbulence, that is, from approximately 10 to 10(3) s. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 50 条
  • [21] Linear modelling of self-similar jet turbulence
    Kuhn, Phoebe
    Soria, Julio
    Oberleithner, Kilian
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 919
  • [22] Self-similar scaling in decaying numerical turbulence
    Yousef, TA
    Haugen, NEL
    Brandenburg, A
    [J]. PHYSICAL REVIEW E, 2004, 69 (05) : 7 - 1
  • [23] Self-similar energy decay in magnetohydrodynamic turbulence
    Galtier, S
    Politano, H
    Pouquet, A
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (15) : 2807 - 2810
  • [24] SELF-SIMILAR BEHAVIOR IN HOMOGENEOUS AND ISOTROPIC TURBULENCE
    SCHERTZER, D
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1980, 290 (13): : 277 - 280
  • [25] Self-similar evolution of Alfven wave turbulence
    Bell, N. K.
    Grebenev, V. N.
    Medvedev, S. B.
    Nazarenko, S. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (43)
  • [26] Condensation transition in large deviations of self-similar Gaussian processes with stochastic resetting
    Smith, Naftali R.
    Majumdar, Satya N.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (05):
  • [27] Use of α-stable self-similar stochastic processes for modeling traffic in broadband networks
    Gallardo, JR
    Makrakis, D
    Orozco-Barbosa, L
    [J]. PERFORMANCE EVALUATION, 2000, 40 (1-3) : 71 - 98
  • [28] STATIONARY SELF-SIMILAR EXTREMAL PROCESSES
    OBRIEN, GL
    TORFS, PJJF
    VERVAAT, W
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (01) : 97 - 119
  • [29] Representation of self-similar Gaussian processes
    Yazigi, Adil
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 99 : 94 - 100
  • [30] A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES
    Davies, J. A.
    Harrison, R. A.
    Perry, C. H.
    Moestl, C.
    Lugaz, N.
    Rollett, T.
    Davis, C. J.
    Crothers, S. R.
    Temmer, M.
    Eyles, C. J.
    Savani, N. P.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 750 (01):