Imbalanced fault diagnosis of rolling bearing using improved MsR-GAN and feature enhancement-driven CapsNet

被引:130
|
作者
Liu, Jie [1 ]
Zhang, Changhe [2 ]
Jiang, Xingxing [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[3] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
关键词
Rolling bearing; Fault diagnosis; Frequency slice wavelet transform; Generative adversarial networks; Capsule network; CONVOLUTIONAL NEURAL-NETWORK; WAVELET TRANSFORM; MACHINERY;
D O I
10.1016/j.ymssp.2021.108664
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Traditional fault diagnosis approaches of rolling bearing often need abundant labeled data in advance while some certain fault data are difficult to be acquired in engineering scenarios. This imbalanced fault data problem limits the diagnostic performance. To solve it, an imbalanced fault diagnosis approach based on improved multi-scale residual generative adversarial network (GAN) and feature enhancement-driven capsule network is proposed in this paper. Firstly, frequency slicing wavelet transform is utilized to extract two-dimensional time-frequency features from original vibration signals. By designing multi-scale residual network structure and hybrid loss function, original GAN model is improved, generating high-quality fake time-frequency features to balance fault data distribution. To increase the attention of the diagnostic model to faultsensitive features and suppress irrelevant features, a feature enhancement network is designed to dynamically weight the fault features by modeling the feature importance. On this basis, enhanced performance of imbalanced fault classification is achieved. Verification experiments demonstrate that it performs well in processing the imbalanced fault data, and has better stability and diagnostic accuracy than state-of-the-art methods.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] An improved morphological filtering and feature enhancement method for rolling bearing fault diagnosis
    Ren, Xueping
    Guo, Liangjian
    Liu, Tongtong
    Zhang, Chao
    Pang, Zhen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [2] Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization
    Lin, Huibin
    Wu, Fangtan
    He, Guolin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 142
  • [3] Imbalanced fault diagnosis of rolling bearing using a deep gradient improved generative adversarial network
    Liu, Shaowei
    Jiang, Hongkai
    Wu, Zhenghong
    Zhao, Ke
    Wang, Xin
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 127 - 132
  • [4] An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data
    Xi, Changsheng
    Yang, Jie
    Liang, Xiaoxia
    Ramli, Rahizar Bin
    Tian, Shaoning
    Feng, Guojin
    Zhen, Dong
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2023, 6 (02) : 108 - 132
  • [5] Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis
    Liu, Shaowei
    Jiang, Hongkai
    Wu, Zhenghong
    Li, Xingqiu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [6] Imbalanced Fault Diagnosis of Rolling Bearing Using Enhanced Generative Adversarial Networks
    Zhang, Hongliang
    Wang, Rui
    Pan, Ruilin
    Pan, Haiyang
    IEEE ACCESS, 2020, 8 : 185950 - 185963
  • [7] Rolling Bearing Fault Diagnosis Using Improved Lifting Scheme
    Jiang Hongkai
    He Yina
    Duan Chendong
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 3780 - 3783
  • [8] A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis
    Ju, Bin
    Zhang, Haijiao
    Liu, Yongbin
    Liu, Fang
    Lu, Siliang
    Dai, Zhijia
    ENTROPY, 2018, 20 (04):
  • [9] A Feature Extraction Method Using VMD and Improved Envelope Spectrum Entropy for Rolling Bearing Fault Diagnosis
    Yang, Yang
    Liu, Hui
    Han, Lijin
    Gao, Pu
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3848 - 3858
  • [10] Framework for imbalanced fault diagnosis of rolling bearing using autoencoding generative adversarial learning
    Rathore, Maan Singh
    Harsha, S. P.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)