Bound-state Solutions of Klein-Gordon and Schrodinger Equations for Arbitrary l-state with Linear Combination of Hulthen and Kratzer Potentials

被引:0
|
作者
Maireche, Abdelmadjid [1 ]
机构
[1] Univ Msila, Sci Fac, Phys Dept, Lab Phys & Chem Mat, Msila, Algeria
来源
AFRICAN REVIEW OF PHYSICS | 2020年 / 15卷
关键词
PHASE-SPACE; COULOMB; PARAMETERS; PRINCIPLE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present approximate solutions of the both the modified Klein-Gordon (MKGE) and modified Schrodinger equation (MSE) containing the modified Hulthen and modified Kratzer potential using the procedure of Bopp's shift method and perturbation theory in addition to the Greene-Aldrich approximation method of handling centrifugal barriers. This study is conducted in the relativistic and nonrelativistic non-commutative 3-dimensional real space (RNC: 3D-RS) and (NRNC: 3D-RS) symmetries, respectively. The Hulthen-Kratzer potential model is extended to include new radial terms. Furthermore, this potential model is proposed to study some selected diatomic molecules, namely N-2, I-2, CO, NO and HCl. The ordinary Bopp's shift method and perturbation theory are surveyed to get generalized excited states energy as a function of the shift energy and the energy E-nl of the HKP model. Furthermore, the obtained perturbative solutions of the discrete spectrum were dependent on Gamma function, the discreet atomic quantum numbers (j, l, s, m) and the potential parameters (V-0,alpha,r(e), D-e) , and the NC-parameters, which are generated with the effect of (space-space) noncommutative properties. We have also applied our results on diatomic-molecules with spin-0 and spin-1, and have shown that the modified Klein-Gordon equation MKG under the MHKP model becomes similar to the Duffin-Kemmer equation.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 50 条
  • [41] Bound state solutions of the Klein-Gordon equation with the generalized Poschl-Teller potential
    Chen, Tao
    Diao, Yong-Feng
    Jia, Chun-Sheng
    [J]. PHYSICA SCRIPTA, 2009, 79 (06)
  • [42] Bound-state solutions of the Schrodinger equation for central-symmetric confining potentials
    Simsek, M
    Özçelik, S
    Musakhanov, MM
    Usmanov, MS
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (09): : 983 - 990
  • [43] Bound-State Solution of s-Wave Klein-Gordon Equation for Woods-Saxon Potential
    Olgar, Eser
    Mutaf, Haydar
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [44] Any l-state solutions of the Schrodinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions
    Edet, C. O.
    Okoi, P. O.
    [J]. REVISTA MEXICANA DE FISICA, 2019, 65 (04) : 333 - 344
  • [45] Improved analytical approximation to arbitrary l-state solutions of the Schrodinger equation for the hyperbolical potential
    Ikhdair, Sameer M.
    Sever, Ramazan
    [J]. ANNALEN DER PHYSIK, 2009, 18 (04) : 189 - 197
  • [46] Bound state solutions of Klein–Gordon equation with Mobius square plus Yukawa potentials
    A. D. Antia
    A. N. Ikot
    H. Hassanabadi
    E. Maghsoodi
    [J]. Indian Journal of Physics, 2013, 87 : 1133 - 1139
  • [47] Arbitrary l-state solutions of the Schrodinger equation for the Eckart potential with an improved approximation of the centrifugal term
    Stanek, Jerzy
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (06): : 1503 - 1508
  • [48] Bound and Scattering State of Position Dependent Mass Klein-Gordon Equation with Hulthen Plus Deformed-Type Hyperbolic Potential
    Ikot, A. N.
    Obong, H. P.
    Abbey, T. M.
    Zare, S.
    Ghafourian, M.
    Hassanabadi, H.
    [J]. FEW-BODY SYSTEMS, 2016, 57 (09) : 807 - 822
  • [49] From the nonrelativistic Morse potential to a unified treatment of a large class of bound-state solutions of a modified D-dimensional Klein-Gordon equation
    Garcia, M. G.
    de Castro, A. S.
    Castro, L. B.
    Alberto, P.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2017, 338 (9-10) : 1160 - 1165
  • [50] Improved analytical approximation to arbitrary l-state solutions of the schrödinger equation for the hyperbolical potentials
    Ikhdair, Sameer M.
    Sever, Ramazan
    [J]. Annalen der Physik (Leipzig), 2009, 18 (10-11): : 747 - 758