A comparative study of bithiophene and thienothiophene based polymers for organic field-effect transistor applications

被引:2
|
作者
Deng, Ping [1 ]
Ren, Shendong [2 ]
Cao, Kangli [1 ]
Li, Hongxiang [2 ]
Zhang, Qing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Dept Polymer Sci & Engn, Shanghai Key Lab Elect Insulat & Thermal Aging, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
HIGH-MOBILITY; SEMICONDUCTING POLYMERS; CONJUGATED POLYMERS;
D O I
10.1007/s10854-016-4950-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
2,2'-Bithiophene and thieno[3,2-b]thiophene were polymerized separately with bis(2,3-dialkylthienyl)benzo[1,2-b:4,5-b']dithiophene by Stille coupling reactions to afford new conjugated polymer PBDTT-2T and PBDTT-TT. The polymers showed band gaps about 1.90 eV and the highest occupied molecular orbital (HOMO) energy levels below -5.20 eV. The PBDTT-2T and PBDTT-TT achieved hole mobilities of 0.035 and 0.008 cm(2) V-1 s(-1) in top-contact/bottom-gate organic field-effect transistor devices. The investigation of thin-film microstructures and morphologies showed that PBDTT-2T thin films had more uniform surface and better crystalline quality than PBDTT-TT did.
引用
收藏
页码:9143 / 9151
页数:9
相关论文
共 50 条
  • [41] Graphene-based Field-effect Transistor Structures for Terahertz Applications
    Abbas, Ahmad
    Karabiyik, Mustafa
    Pala, Nezih
    [J]. TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS VI: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2012, 8363
  • [42] Organic nanochannel field-effect transistor with organic conductive wires
    Sakai, Masatoshi
    Nakamura, Masakazu
    Kudo, Kazuhiro
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (06)
  • [43] High mobility organic field-effect transistor based on hexamethylenetetrathiafulvalene with organic metal electrodes
    Takahashi, Yukihiro
    Hasegawa, Tatsuo
    Horiuchi, Sachio
    Kumai, Reiji
    Tokura, Yoshinori
    Saito, Gunji
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (26) : 6382 - 6384
  • [44] Proteins as functional interlayer in organic field-effect transistor
    Zhang, Wei-Hong
    Jiang, Bo-Jing
    Yang, Peng
    [J]. CHINESE CHEMICAL LETTERS, 2016, 27 (08) : 1339 - 1344
  • [45] Top-Gate Field-Effect Transistor as a Testbed for Evaluating the Photostability of Organic Photovoltaic Polymers
    Roh, Jeongkyun
    Biswas, Swarup
    Lee, Hyeong Won
    Lee, Yongju
    Lee, Jaeyeop
    Kim, Jaeyoul
    Lee, Changhee
    Kim, Hyeok
    [J]. SOLAR RRL, 2022, 6 (06)
  • [46] Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications
    Fu XiaoLong
    Wang ChengLiang
    Li RongJin
    Dong HuanLi
    Hu WenPing
    [J]. SCIENCE CHINA-CHEMISTRY, 2010, 53 (06) : 1225 - 1234
  • [47] Proteins as functional interlayer in organic field-effect transistor
    Wei-Hong Zhang
    Bo-Jing Jiang
    Peng Yang
    [J]. Chinese Chemical Letters, 2016, 27 (08) : 1339 - 1344
  • [48] Potentiometry of an operating organic semiconductor field-effect transistor
    Seshadri, K
    Frisbie, CD
    [J]. APPLIED PHYSICS LETTERS, 2001, 78 (07) : 993 - 995
  • [49] The organic light-emitting field-effect transistor
    Schidleja, Martin
    Melzer, Christian
    von Seggern, Heinz
    [J]. FREQUENZ, 2008, 62 (3-4) : 100 - 103
  • [50] Control of consistent ordering in π-conjugated polymer films for organic field-effect transistor applications
    Pei, Mingyuan
    Park, Kwang Hun
    Jang, Mi
    Lee, Sang Bong
    Ahn, Joongyu
    Kim, Yun-Hi
    Yang, Hoichang
    [J]. RSC ADVANCES, 2016, 6 (75): : 70733 - 70739