Power-law eigenvalue density, scaling, and critical random-matrix ensembles

被引:3
|
作者
Muttalib, K. A.
Ismail, Mourad E. H.
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 05期
关键词
D O I
10.1103/PhysRevE.76.051105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong to the class of critical ensembles.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Power-law random walks
    Vignat, C.
    Plastino, A.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [42] Eigenvalue analysis for a crack in a power-law material
    Stepanova, L. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (08) : 1332 - 1347
  • [43] Eigenvalue analysis for a crack in a power-law material
    L. V. Stepanova
    Computational Mathematics and Mathematical Physics, 2009, 49 : 1332 - 1347
  • [44] Power-law scaling behavior of membranes
    Tatlier, M
    Tantekin-Ersolmaz, SB
    Atalay-Oral, Ç
    Erdem-Senatalar, A
    JOURNAL OF MEMBRANE SCIENCE, 2001, 182 (1-2) : 183 - 193
  • [45] Power-Law Graphs Have Minimal Scaling of Kemeny Constant for Random Walks
    Xu, Wanyue
    Sheng, Yibin
    Zhang, Zuobai
    Kan, Haibin
    Zhang, Zhongzhi
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 46 - 56
  • [46] Explicit Inverse of the Covariance Matrix of Random Variables with Power-Law Covariance
    Cao, Yingli
    Wu, Jingxian
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 840 - 844
  • [47] Scattering at the Anderson transition:: Power-law banded random matrix model
    Mendez-Bermudez, J. A.
    Varga, I.
    PHYSICAL REVIEW B, 2006, 74 (12)
  • [48] REAL SYMMETRICAL RANDOM-MATRIX ENSEMBLES OF HAMILTONIANS WITH PARTIAL SYMMETRY-BREAKING
    LEITNER, DM
    PHYSICAL REVIEW E, 1993, 48 (04): : 2536 - 2546
  • [49] Random-matrix universality in the small-eigenvalue spectrum of the lattice Dirac operator
    Berbenni-Bitsch, ME
    Jackson, AD
    Meyer, S
    Schafer, A
    Verbaarschot, JJM
    Wettig, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 820 - 822
  • [50] The lowest eigenvalue of Jacobi random matrix ensembles and Painleve VI
    Duenez, E.
    Huynh, D. K.
    Keating, J. P.
    Miller, S. J.
    Snaith, N. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (40)