A maximum principle for diffusive Lotka-Volterra systems of two competing species

被引:12
|
作者
Chen, Chiun-Chuan [1 ,2 ]
Hung, Li-Chang [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei, Taiwan
[2] Natl Ctr Theoret Sci, Hsinchu, Taiwan
关键词
TRAVELING-WAVE SOLUTIONS; EQUATIONS; SPEED;
D O I
10.1016/j.jde.2016.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using an elementary approach, we establish a new maximum principle for the diffusive Lotka-Volterra system of two competing species, which involves pointwise estimates of an elliptic equation consisting of the second derivative of one function, the first derivative of another function, and a quadratic nonlinearity. This maximum principle gives a priori estimates for the total mass of the two species. Moreover, applying it to the system of three competing species leads to a nonexistence theorem of traveling wave solutions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4573 / 4592
页数:20
相关论文
共 50 条
  • [41] ON THE NUMBER OF POSITIVE PERIODIC-SOLUTIONS FOR PLANAR COMPETING LOTKA-VOLTERRA SYSTEMS
    ORTEGA, R
    TINEO, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (03) : 975 - 978
  • [42] Introduction and permanence of species in a diffusive Lotka-Volterra system with time-dependent coefficients
    López-Sánchez, U
    Alhama, F
    González-Fernández, CF
    ECOLOGICAL MODELLING, 2005, 183 (01) : 1 - 9
  • [43] Global observer for Lotka-Volterra systems
    Badri, Vahid
    SYSTEMS & CONTROL LETTERS, 2022, 167
  • [44] Lotka-Volterra systems with stochastic resetting
    Mercado-Vasquez, Gabriel
    Boyer, Denis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (40)
  • [45] On impulsive Lotka-Volterra systems with diffusion
    Struk O.O.
    Tkachenko V.I.
    Ukrainian Mathematical Journal, 2002, 54 (4) : 629 - 646
  • [46] Lotka-Volterra Systems with Periodic Orbits
    Kobayashi, Manami
    Suzuki, Takashi
    Yamada, Yoshio
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 129 - 155
  • [47] Integrable deformations of Lotka-Volterra systems
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    PHYSICS LETTERS A, 2011, 375 (38) : 3370 - 3374
  • [48] Integrability and linearizability of the Lotka-Volterra systems
    Liu, CJ
    Chen, GT
    Li, CZ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 301 - 320
  • [49] Stability of neutral Lotka-Volterra systems
    Yi, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (02) : 391 - 402
  • [50] Chaos in perturbed Lotka-Volterra systems
    Christie, JR
    Gopalsamy, K
    Li, JB
    ANZIAM JOURNAL, 2001, 42 : 399 - 412