High-efficiency polymer solar cells with low temperature solution-processed SnO2/PFN as a dual-function electron transporting layer

被引:39
|
作者
Shen, Ping [1 ]
Yao, Mengnan [1 ]
Wang, Guoxin [1 ]
Mi, Ruoning [1 ]
Guo, Wenbin [1 ]
Bai, Yang [2 ,3 ]
Shen, Liang [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Jilin, Peoples R China
[2] Univ Queensland, Nanomat Ctr, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
关键词
POWER CONVERSION EFFICIENCY; CONJUGATED POLYELECTROLYTE; EXCEEDING; 10-PERCENT; PERFORMANCE; OXIDE; ZNO; EXTRACTION; FILMS; PTB7;
D O I
10.1039/c8ta06378h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electron transporting layers (ETLs) existing between active layers and an electrode play a critical role in improving the performance parameters of polymer solar cells (PSCs). Traditional wide bandgap semiconductor metal oxides as ETLs usually require high temperature fabrication process, which is incompatible with flexible substrates as well as roll-to-roll manufacturing technology. Herein, we demonstrate high-efficiency PSCs with integrated low temperature solution-processed tin dioxide (SnO2) nanocrystals and a poly-[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) stacked structure as an ETL with excellent photoelectric performance. A combination of characterizations including ultraviolet photoelectron spectroscopy, transient photovoltage and transient photocurrent measurements, and impedance spectroscopy were used to systematically study the interfacial effects induced by the SnO2/PFN ETL. It shows that SnO2 nanocrystals can serve as an efficient electron-selective buffer except for an unmatched energy level, while the PFN interlayer can intentionally reduce the energy misalignment of devices through forming dipoles at the interface and effectively reduce the work function. With these dual functions, the-state of the-art PSCs based on SnO2/PFN outperform those based on SnO2-only in power conversion efficiency, from 4.31% to 11.05%. We believe that the SnO2/PFN bilayer structure integrating the function of enhanced electron extraction and reduced charge recombination can be applied to produce higher performance devices by using a low temperature solution-processed technique.
引用
收藏
页码:17401 / 17408
页数:8
相关论文
共 50 条
  • [31] High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer
    Zhang, Meiying
    Wu, Fengmin
    Chi, Dan
    Shi, Keli
    Huang, Shihua
    MATERIALS ADVANCES, 2020, 1 (04): : 617 - 624
  • [32] Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells
    Ren, Xiaodong
    Liu, Yucheng
    Lee, Dong Geon
    Kim, Won Bin
    Han, Gill Sang
    Jung, Hyun Suk
    Liu, Shengzhong
    INFOMAT, 2020, 2 (02) : 401 - 408
  • [33] Review on Surface Modification of SnO2 Electron Transport Layer for High-Efficiency Perovskite Solar Cells
    Huy, Vo Pham Hoang
    Bark, Chung-Wung
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [34] Enhanced Crystallinity of Low-Temperature Solution-Processed SnO2 for Highly Reproducible Planar Perovskite Solar Cells
    Li, Jing
    Bu, Tongle
    Liu, Yifan
    Zhou, Jing
    Shi, Jielin
    Ku, Zhiliang
    Peng, Yong
    Zhong, Jie
    Cheng, Yi-Bing
    Huang, Fuzhi
    CHEMSUSCHEM, 2018, 11 (17) : 2898 - 2903
  • [35] Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer
    Yun, Alan Jiwan
    Kim, Jinhyun
    Hwang, Taehyun
    Park, Byungwoo
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3554 - 3560
  • [36] Solution-processed SnO2 nanoparticle interfacial layers for efficient electron transport in ZnO-based polymer solar cells
    Huang, Shuai
    Tang, Yuting
    Yu, Ancan
    Wang, Yunhe
    Shen, Si
    Kang, Bonan
    Silva, S. Ravi P.
    Lu, Geyu
    ORGANIC ELECTRONICS, 2018, 62 : 373 - 381
  • [37] Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility
    You, Jingbi
    Hong, Ziruo
    Yang, Yang
    Chen, Qi
    Cai, Min
    Song, Tze-Bin
    Chen, Chun-Chao
    Lu, Shirong
    Liu, Yongsheng
    Zhou, Huanping
    Yang, Yang
    ACS NANO, 2014, 8 (02) : 1674 - 1680
  • [38] Low-temperature electrodeposited crystalline SnO2 as an efficient electron transporting layer for conventional perovskite solar cells
    Chen, Jung-Yao
    Chueh, Chu-Chen
    Zhu, Zonglong
    Chen, Wen-Chang
    Jen, Alex K. -Y.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 164 : 47 - 55
  • [39] Enhance the efficiency of perovskite solar cells using W doped SnO2 electron transporting layer
    Cheng, Nian
    Li, Weiwei
    Zheng, Dingshan
    Yang, Wen-Xing
    CHEMPHOTOCHEM, 2024, 8 (06)
  • [40] Low-temperature solution-processed flexible organic solar cells with PFN/AgNWs cathode
    Seo, Ji Hoon
    Um, Han-Don
    Shukla, Atul
    Hwang, Inchan
    Park, Juyun
    Kang, Yong-Cheol
    Kim, Chang Su
    Song, Myungkwan
    Seo, Kwanyong
    NANO ENERGY, 2015, 16 : 122 - 129